Regulation of H2a-specific proteolysis by the histone H3:H4 tetramer. 1988

M C Elia, and E N Moudrianakis
Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218.

We have studied the limited cleavage of H2a in the H2a:H2b histone dimer by the H2a-specific protease under physiological conditions (neutral pH, 0.1 M NaCl) using a variety of histone-DNA reconstitutes as substrates and/or regulators of the partially purified enzyme. Under these conditions the protease cleaves H2a in "native" dimer-DNA reconstitutes but not in "native" octamer-DNA reconstitutes. Treatment of the enzyme with saturating amounts of H3:H4 tetramer-DNA prior to addition of dimer-DNA substrate results in complete inhibition of H2a-specific proteolysis. Sucrose gradient sedimentation experiments indicate that the protease binds reversibly to tetramer-DNA and that this leads to the reversible inhibition of enzymatic activity. Using three different tetramer-DNA complexes, we found native tetramer-DNA to be a more effective inhibitor than either trypsin-treated tetramer-DNA or acetylated tetramer-DNA. We conclude that under physiological conditions, the H2a-specific protease binds primarily to the highly basic amino-terminal domain of the H3:H4 tetramer, and this binding lowers the effective concentration of enzyme available to cleave H2a. Although no cleaved H2a is produced when protease is mixed with native octamer-DNA, incubation of the enzyme with acetylated octamer-DNA results in H2a-specific proteolysis. This is the first demonstration that the H2a-specific protease activity can be modulated by a physiologically relevant process (e.g. histone acetylation). We propose that the sequestered protease may be functionally regulated in vivo through reversible post-translational modifications to the NH2-terminal domains of the histone H3:H4 tetramer.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations

Related Publications

M C Elia, and E N Moudrianakis
January 1984, Ukrainskii biokhimicheskii zhurnal (1978),
M C Elia, and E N Moudrianakis
January 1978, Cold Spring Harbor symposia on quantitative biology,
M C Elia, and E N Moudrianakis
May 1984, Biokhimiia (Moscow, Russia),
M C Elia, and E N Moudrianakis
June 1976, Biochemistry,
M C Elia, and E N Moudrianakis
April 2000, The Journal of biological chemistry,
M C Elia, and E N Moudrianakis
July 2020, Science (New York, N.Y.),
M C Elia, and E N Moudrianakis
January 1985, Molekuliarnaia biologiia,
M C Elia, and E N Moudrianakis
May 2004, Protein science : a publication of the Protein Society,
M C Elia, and E N Moudrianakis
April 2016, The Journal of biological chemistry,
Copied contents to your clipboard!