Non-enzymatic electrochemical approaches to cholesterol determination. 2020

Ksenia Derina, and Elena Korotkova, and Jiří Barek
National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia.

Cholesterol plays a vital role in a human body. It is known as one of the most important sterols, because it forms cell walls and participates in signal transduction. Moreover, cholesterol was recognized as biomarker of cardiovascular diseases and of some metabolic disorders. As a result, cholesterol blood levels should be controlled in a variety of diseases such as ischemic heart disease, cerebrovascular ischemia, stroke, hypertension, type II diabetes, and many others. Hence, the accurate cholesterol quantification plays an important role in diagnosis and treatment of these diseases. Modern voltammetric and amperometric methods are increasingly used for cholesterol monitoring. Consequently, the problem of electrode fabrication for cholesterol detection has high importance for clinical tests. Novel electrode materials initiated the fast growth of electrochemical biosensors. Biomaterials are still the most frequently used modifiers for cholesterol sensors due to their high selectivity. However, biomaterials have low stability complicating their practical applications. This fact is crucial for analytical parameters such as limit of detection (LOD) and sensitivity. Therefore, nanomaterials are used to eliminate disadvantages of biomaterials and to improve sensors performance by increasing the electrode surface, conductivity and sensitivity. This review is focused on the use of non-enzymatic electrodes for cholesterol quantification and on different approaches to their fabrication. Firstly, the necessity and role of modifier is discussed. Afterwards, the advantages and disadvantages of currently used modifiers are critically compared together with all aspects and approaches to sensors fabrication. Finally, the prospects of non-enzymatic electrodes application for cholesterol sensors engineering are summarised.

UI MeSH Term Description Entries
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D055664 Electrochemical Techniques The utilization of an electrical current to measure, analyze, or alter chemicals or chemical reactions in solution, cells, or tissues. Electrochemical Technics,Electrochemical Technic,Electrochemical Technique,Technic, Electrochemical,Technics, Electrochemical,Technique, Electrochemical,Techniques, Electrochemical
D057230 Limit of Detection Concentration or quantity that is derived from the smallest measure that can be detected with reasonable certainty for a given analytical procedure. Limits of Detection,Detection Limit,Detection Limits

Related Publications

Ksenia Derina, and Elena Korotkova, and Jiří Barek
January 2022, Sensors (Basel, Switzerland),
Ksenia Derina, and Elena Korotkova, and Jiří Barek
February 2022, Current opinion in biotechnology,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
November 2022, Food chemistry,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
August 2023, Analytical methods : advancing methods and applications,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
January 2015, Biosensors & bioelectronics,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
July 2020, Analytical methods : advancing methods and applications,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
November 2021, RSC advances,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
June 1979, Nihon rinsho. Japanese journal of clinical medicine,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
February 1977, Das Medizinische Laboratorium,
Ksenia Derina, and Elena Korotkova, and Jiří Barek
January 2024, Nanotechnology,
Copied contents to your clipboard!