Effects of insulin and insulin-like growth factor I on growth of human leukemia cells in serum-free and protein-free medium. 1988

J Sinclair, and D McClain, and R Taetle
Department of Medicine, University of California, San Diego 92103.

Human myeloid leukemia cells (HL60) and malignant lymphocytes (Namalwa) were grown in protein-free, Fe-supplemented media and used to study growth responses to insulin and insulin-like growth factor 1 (IGF-I). HL60 cells previously grown in serum-free medium containing microgram quantities of insulin showed an 18-fold reduction in cumulative cell production when grown without insulin. However, the same cells showed reduced or absent growth stimulation with 1 to 100 ng/mL insulin or IGF-I for at least four days following insulin deprivation, indicating that culture conditions modified insulin and IGF-I responses. When the same cells were grown in Fe-supplemented, protein-free medium (RPMI-Fe), insulin and IGF-I caused dose-dependent stimulation of HL60 cell growth with half-maximal stimulation at nanogram concentrations. Namalwa cells grown in protein-free medium showed no response to either hormone. Radioligand binding showed the presence of insulin and IGF-I receptors on both HL60 and Namalwa cells grown in RPMI-Fe. HL60 cells grown in fetal bovine serum had higher, and cells grown with microgram quantities of insulin dramatically reduced, insulin binding. Competitive binding studies and cultures with anti-IGF-I receptor antibody showed insulin and IGF-I stimulated growth through their respective specific receptors. Both insulin and IGF-I stimulate growth of some cultured human leukemia cells, but the presence of insulin or IGF-I receptors alone does not predict growth responses. Culture conditions affect both cellular responses and ligand binding by these hormones and must be closely controlled to study growth responses.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods

Related Publications

J Sinclair, and D McClain, and R Taetle
January 1987, Calcified tissue international,
J Sinclair, and D McClain, and R Taetle
November 1998, British journal of rheumatology,
J Sinclair, and D McClain, and R Taetle
January 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J Sinclair, and D McClain, and R Taetle
January 1997, Journal of pediatric endocrinology & metabolism : JPEM,
Copied contents to your clipboard!