Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. 2020

Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
Akdeniz University, Faculty of Science, Department of Chemistry, Antalya, Turkey.

In this study, agar/κ-carrageenan/montmorillonite (MMT) hydrogels were prepared to examine their usability as wound dressing materials and to see the effect of MMT amount on some properties of agar/κ-carrageenan hydrogel materials. Hydrogels were characterized by SEM-EDX, TEM and DSC analyses. By increasing the MMT content within hydrogel matrix from 0% to 5%, the decomposition temperature of the hydrogel material was increased from 256.6 °C to 262.1 °C. Swelling amount of hydrogels in d-glucose solution (2682%) was found to be much higher compared with other physiological solutions such as physiological saline solution (937%), synthetic urine solution (746%) and simulated wound fluid (563%). The release studies of analgesic lidocaine hydrochloride (LDC) and antibiotic chloramphenicol (CLP) drugs from hydrogel systems demonstrated that the release amount of LDC and CLP from hydrogels could be controlled by MMT amount within hydrogel matrix. The concentrations of drugs within hydrogel sample stored at 4 °C for 6 months did not exhibit a significant change. Hydrogel materials containing CLP exhibited good antibacterial activity against E. coli and S. aureus. Cytotoxicity test results indicated that hydrogels were biocompatible with MG-63 cells. The ultimate compressive stress of agar/κ-carrageenan hydrogel with LDC and CLP and agar/κ-carrageenan/MMT hydrogel including 5% MMT with LDC and CLP was measured as 38.30 kPa and 47.70 kPa, respectively. The experimental results revealed that prepared agar/κ-carrageenan and agar/κ-carrageenan/MMT hydrogels have great potential for wound care applications.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D002351 Carrageenan A water-soluble extractive mixture of sulfated polysaccharides from RED ALGAE. Chief sources are the Irish moss CHONDRUS CRISPUS (Carrageen), and Gigartina stellata. It is used as a stabilizer, for suspending COCOA in chocolate manufacture, and to clarify BEVERAGES. Carrageenin,iota-Carrageenan,kappa-Carrageenan,lambda-Carrageenan,iota Carrageenan,kappa Carrageenan,lambda Carrageenan
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004356 Drug Storage The process of keeping pharmaceutical products in an appropriate location. Drug Storages,Storage, Drug,Storages, Drug
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000080385 Nanogels Three-dimensional biocompatible materials formed by cross-linking a hydrophilic polymeric component (e.g., HYDROGELS). They are typically spherical particles in a size range of 20-250 nm when used for drug delivery applications. Nanocomposite Gel,Nanocomposite Gels,Nanocomposite Hydrogel,Nanocomposite Hydrogels,Gel, Nanocomposite,Hydrogel, Nanocomposite

Related Publications

Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
May 2021, Materials science & engineering. C, Materials for biological applications,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
May 2024, Journal of materials chemistry. B,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
August 2016, Journal of biomaterials science. Polymer edition,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
June 2012, Carbohydrate polymers,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
December 2012, Journal of food science,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
January 2022, Polymers,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
October 2014, Colloids and surfaces. B, Biointerfaces,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
February 2019, Carbohydrate polymers,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
January 2022, Frontiers in bioengineering and biotechnology,
Tülin Gürkan Polat, and Osman Duman, and Sibel Tunç
January 2018, International journal of biological macromolecules,
Copied contents to your clipboard!