Ultrastructure of cells cultured on polycarbonate membranes. 1977

W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham

A method is described for preparing undisturbed cell cultures for both scanning and transmission electron microscopy. Cells were propagated on polycarbonate membranes with pores of 0.2 micrometer or less. Cultured cells together with their supports were prepared for both scanning electron microscopy and transmission electron microscopy using routine methods. For transmission electron microscopy a rapid schedule of infiltration and polymerization was used. The method described in this report yielded good results and it allowed the fine structure of cultured cells to be viewed in situ by both scanning electron microscopy and transmission electron microscopy.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006652 Histological Techniques Methods of preparing tissue for examination and study of the origin, structure, function, or pathology. Histologic Technic,Histologic Technics,Histologic Technique,Histologic Techniques,Histological Technics,Technic, Histologic,Technics, Histologic,Technique, Histologic,Techniques, Histologic,Histological Technic,Histological Technique,Technic, Histological,Technics, Histological,Technique, Histological,Techniques, Histological

Related Publications

W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
March 1999, Pharmaceutical research,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
June 1978, Cancer research,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
September 1969, Cancer,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
January 1991, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
January 1988, Placenta,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
January 1973, Transactions - American Society for Artificial Internal Organs,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
May 1983, Journal of ultrastructure research,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
January 1977, Acta medica Polona,
W Nopanitaya, and R K Charlton, and R L Turchin, and J W Grisham
May 2002, Acta tropica,
Copied contents to your clipboard!