Normal yeast tRNA(CAGGln) can suppress amber codons and is encoded by an essential gene. 1986

W A Weiss, and E C Friedberg

We have isolated a gene that can encode yeast tRNA(CAGGln). When present on a multicopy plasmid, this gene suppresses the phenotype of a number of amber mutants, but has no effect on the ocher mutants tested. We therefore conclude that the anticodon CUG in tRNA(CAGGln) can decode the amber codon UAG by G-U mispairing, possibly by wobble base-pairing in the first codon position. This represents the second example we have observed in this laboratory of nonsense suppression in yeast by natural tRNA(Gln), involving G-U mispairing in the first codon position. Replacing the genomic copy of the cloned gene with a disrupted tRNA gene results in recessive lethality in heterozygous diploids and is lethal to haploid cells. This lethality can be rescued by transformation of cells with a single copy plasmid containing the tRNA(CAGGln) gene. Thus, the gene encoding tRNA(CAGGln) is apparently essential for viability in yeast, suggesting that it is normally present as a single copy gene.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

W A Weiss, and E C Friedberg
December 1991, Proceedings of the National Academy of Sciences of the United States of America,
W A Weiss, and E C Friedberg
January 1997, European journal of biochemistry,
W A Weiss, and E C Friedberg
January 1983, Nature,
W A Weiss, and E C Friedberg
August 1995, Molecular and cellular biology,
W A Weiss, and E C Friedberg
November 1983, Nucleic acids research,
W A Weiss, and E C Friedberg
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
W A Weiss, and E C Friedberg
April 1980, European journal of biochemistry,
Copied contents to your clipboard!