Novel methodology for measuring intraoral wear in enamel and dental restorative materials. 2020
To test the hypotheses that (a) the chairside/handheld dental scanner combined with a metrology software will measure clinical wear in vivo in agreement with measurements from X-ray computed microtomography and; (b) polished monolithic zirconia does not cause accelerated wear of opposing enamel. Thirty single crowns were randomized to receive a monolithic zirconia or metal-ceramic crown. Two non-restored opposing teeth in the same quadrants were identified to serve as enamel controls. After cementation, quadrants were scanned using an intraoral dental scanner. Patients were recalled at 6-months and 1-year for re-scanning. Scanned images were compared using a metrology software to determine maximum vertical wear of teeth. The accuracy of the scanning measurements from this new method was compared with X-ray computed microtomography (micro-CT) measurements. Statistical analysis was performed using Mann-Whitney U test to determine significant differences between wear of enamel against zirconia, metal-ceramic or enamel. Linear regression analysis determined agreement between measurements obtained using intraoral scanning and micro-CT. Regression analysis demonstrated that there is a quantitative agreement between depth and volume measurements produced using intraoral scanning and the micro-CT methodologies. There was no significant difference between the wear of enamel against polished monolithic zirconia crowns and enamel against enamel. Intraoral scanning combined with a matching software can accurately quantify clinical wear to verify that monolithic zirconia exhibited comparable wear of enamel compared with metal-ceramic crowns and control enamel. Agreement between the intraoral scanner and the micro-CT was 99.8%. Clinical Trials.gov NCT02289781.