Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. 2021

Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.

Pseudomonas aeruginosa is a gram-negative bacterium that exists in various ecosystems, causing severe infections in patients with AIDS or cystic fibrosis. P. aeruginosa can form biofilm on a variety of surfaces, whereby the bacteria produce defensive substances and enhance antibiotic-resistance, making themselves more adaptable to hostile environments. P. aeruginosa resistance represents one of the main causes of infection-related morbidity and mortality at a global level. Iron is required for the growth of P. aeruginosa biofilm. This review summarises how the iron metabolism contributes to develop biofilm, and more importantly, it may provide some references for the clinic to achieve novel anti-biofilm therapeutics by targeting iron activities.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011552 Pseudomonas Infections Infections with bacteria of the genus PSEUDOMONAS. Infections, Pseudomonas,Pseudomonas aeruginosa Infection,Infection, Pseudomonas,Pseudomonas Infection,Pseudomonas aeruginosa Infections
D003550 Cystic Fibrosis An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION. Mucoviscidosis,Cystic Fibrosis of Pancreas,Fibrocystic Disease of Pancreas,Pancreatic Cystic Fibrosis,Pulmonary Cystic Fibrosis,Cystic Fibrosis, Pancreatic,Cystic Fibrosis, Pulmonary,Fibrosis, Cystic,Pancreas Fibrocystic Disease,Pancreas Fibrocystic Diseases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000163 Acquired Immunodeficiency Syndrome An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993. AIDS,Immunodeficiency Syndrome, Acquired,Immunologic Deficiency Syndrome, Acquired,Acquired Immune Deficiency Syndrome,Acquired Immuno-Deficiency Syndrome,Acquired Immuno Deficiency Syndrome,Acquired Immuno-Deficiency Syndromes,Acquired Immunodeficiency Syndromes,Immuno-Deficiency Syndrome, Acquired,Immuno-Deficiency Syndromes, Acquired,Immunodeficiency Syndromes, Acquired,Syndrome, Acquired Immuno-Deficiency,Syndrome, Acquired Immunodeficiency,Syndromes, Acquired Immuno-Deficiency,Syndromes, Acquired Immunodeficiency
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
August 2005, Proceedings of the National Academy of Sciences of the United States of America,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
March 2009, Journal of applied microbiology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
September 2017, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
July 2018, Journal of microbiology (Seoul, Korea),
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
August 2016, Canadian journal of microbiology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
January 2008, PloS one,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
April 2023, Environmental microbiology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
December 2009, Molecular microbiology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
December 2023, Journal of applied microbiology,
Yapeng Zhang, and Xuanhe Pan, and Linqian Wang, and Liyu Chen
December 2014, BMC complementary and alternative medicine,
Copied contents to your clipboard!