Engineering enzyme specificity by "substrate-assisted catalysis". 1987

P Carter, and J A Wells

A novel approach to engineering enzyme specificity is presented in which a catalytic group from an enzyme is first removed by site-directed mutagenesis causing inactivation. Activity is then partially restored by substrates containing the missing catalytic functional group. Replacement of the catalytic His with Ala in the Bacillus amyloliquefaciens subtilisin gene (the mutant is designated His64Ala) by site-directed mutagenesis reduces the catalytic efficiency (kcat/Km) by a factor of a million when assayed with N-succinyl-L-Phe-L-Ala-L-Ala-L-Phe-p-nitroanilide (sFAAF-pNA). Model building studies showed that a His side chain at the P2 position of a substrate bound at the active site of subtilisin could be virtually superimposed on the catalytic His side chain of this serine protease. Accordingly, the His64Ala mutant hydrolyzes a His P2 substrate (sFAHF-pNA) up to 400 times faster than a homologous Ala P2 or Gln P2 substrate (sFAAF-pNA or sFAQF-pNA) at pH 8.0. In contrast, the wild-type enzyme hydrolyzes these three substrates with similar catalytic efficiencies. Additional data from substrate-dependent pH profiles and hydrolysis of large polypeptides indicate that the His64Ala mutant enzyme can recover partially the function of the lost catalytic histidine from a His P2 side chain on the substrate. Such "substrate-assisted catalysis" provides a new basis for engineering enzymes with very narrow and potentially useful substrate specificities. These studies also suggest a possible functional intermediate in the evolution of the catalytic triad of serine proteases.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013381 Subtilisins A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.- Alcalase,AprA-Subtilisin,Bacillus amyloliquefaciens Serine Protease,Bacillus subtilis Alkaline Proteinase,Carlsberg Subtilisin,Maxatase,Nagarse,Novo Alcalase,Profezim,Protease VII,Subtilisin 72,Subtilisin A,Subtilisin BPN',Subtilisin Carlsberg,Subtilisin DY,Subtilisin E,Subtilisin GX,Subtilisin Novo,Subtilopeptidase A,Alcalase, Novo,AprA Subtilisin,Subtilisin, Carlsberg

Related Publications

P Carter, and J A Wells
August 1991, Current opinion in biotechnology,
P Carter, and J A Wells
September 1995, Biochemistry,
P Carter, and J A Wells
May 2006, Journal of the American Chemical Society,
P Carter, and J A Wells
May 2000, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
P Carter, and J A Wells
February 2004, Organic & biomolecular chemistry,
P Carter, and J A Wells
May 2011, Protein engineering, design & selection : PEDS,
P Carter, and J A Wells
June 2003, Biochemical Society transactions,
P Carter, and J A Wells
January 2004, Applied biochemistry and biotechnology,
Copied contents to your clipboard!