Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. 2021

Andrés Trostchansky, and Irene Wood, and Homero Rubbo
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. Electronic address: trocha@fmed.edu.uy.

Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

Andrés Trostchansky, and Irene Wood, and Homero Rubbo
January 1999, Clinical reviews in allergy & immunology,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
April 1982, The Journal of experimental medicine,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
July 1991, Biochemical and biophysical research communications,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
August 1961, The Journal of laboratory and clinical medicine,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
January 1997, Advances in experimental medicine and biology,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
March 1986, The Journal of experimental medicine,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
March 1985, Nihon rinsho. Japanese journal of clinical medicine,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
January 1980, Ciba Foundation symposium,
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
August 2021, Sheng li xue bao : [Acta physiologica Sinica],
Andrés Trostchansky, and Irene Wood, and Homero Rubbo
July 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!