Phenylethanolamine N-methyltransferase-containing neurons in the rostral ventrolateral medulla of the rat. I. Normal ultrastructure. 1987

T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis

The electron microscopic localization of the adrenaline-synthesizing enzyme, phenylethanolamine N-methyltransferase (PNMT) was examined in the rostral ventrolateral medulla (RVL) of adult rats. The brains were fixed by perfusion with 3.75% acrolein and 2.0% paraformaldehyde in phosphate buffer. Coronal Vibratome sections through the RVL were immunocytochemically labeled using a rabbit polyclonal antiserum to PNMT and the peroxidase-antiperoxidase method. A semi-quantitative ultrastructure analysis revealed that the perikarya constituted 9% of the total immunoreactive profiles observed in the RVL. The labeled somata were large (18-24 microns) and were characterized by an indented nucleus and abundant cytoplasm with numerous mitochondria. An average of 136.8 +/- 11.6 mitochondria were present per 100 microns2 cytoplasm, which is 38% greater than the numbers found for PNMT-immunoreactive neurons in the nucleus of the solitary tract. Moreover, the labeled somata were often found in direct apposition to the basal lamina of small capillaries and neighboring astrocytic processes. The remaining labeled profiles were neuronal processes of which 72% were dendrites. Both the PNMT-labeled somata and dendrites received primarily symmetric contacts from unlabeled axon terminals. Only a few axons and terminals containing immunoreactivity for PNMT were observed. The axons were both unmyelinated and myelinated. The PNMT-immunoreactive terminals were characterized by a mixed population of vesicles and by the formation of synaptic junctions with both unlabeled dendrites and PNMT-labeled perikarya and dendrites. The ultrastructural morphology and proximity to blood vessels and glia suggest a high metabolic activity and possibly a chemosensory function of PNMT neurons in the RVL. The existence of myelinated and unmyelinated axons could imply that PNMT-containing neurons have different conduction velocities in efferent pathways to the spinal cord or other brain regions. Furthermore, the multiple types of synaptic interactions between labeled and unlabeled axons and dendrites support the concept that adrenergic neurons modulate and are modulated by neurons containing the same or other putative transmitters in the RVL.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
September 1985, The Journal of comparative neurology,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
November 2004, Brain research,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
January 1989, Proceedings of the National Academy of Sciences of the United States of America,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
April 1995, The American journal of physiology,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
November 1997, The Journal of comparative neurology,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
June 2002, Autonomic neuroscience : basic & clinical,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
April 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
April 1999, Brain research,
T A Milner, and V M Pickel, and D H Park, and T H Joh, and D J Reis
May 1988, Brain research,
Copied contents to your clipboard!