Phenylethanolamine N-methyltransferase-containing neurons in the rostral ventrolateral medulla. II. Synaptic relationships with GABAergic terminals. 1987

T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis

The ultrastructural morphology of terminals synthesizing gamma-aminobutyric acid (GABA), as indicated by peroxidase immunoreactivity for its synthetic enzyme L-glutamate decarboxylase (GAD), was examined in the rostral ventrolateral medulla (RVL) of the adult rat brain. The objective of the study was to determine the types of synaptic associations between the GABAergic terminals and other neurons in the RVL, particularly the C1-adrenergic neurons containing phenylethanolamine N-methyltransferase (PNMT). The brains were fixed by perfusion with 3.75% acrolein and 2.0% paraformaldehyde in phosphate buffer. Coronal Vibratome sections through the RVL were singly labeled with a sheep antiserum to GAD using the peroxidase-antiperoxidase (PAP) method. Additional sections were dually labeled using the PAP technique for the GAD antiserum and immunogold labeling for a rabbit antiserum against PNMT. Ultrastructural analysis revealed that peroxidase labeling for GAD was localized primarily to axons and axon terminals in both single and dual labeled material. The axons were small and unmyelinated. The GAD-labeled terminals were 0.5-2.0 microns in diameter and contained a large population of small clear vesicles usually associated with a few mitochondria. These terminals formed synapses with many dendrites, a few nerve cell bodies and axon terminals. The junctions were all symmetric and the postsynaptic structures failed to exhibit immunoreactivity when processed only for GAD labeling. In sections incubated with both GAD and PNMT antisera, the peroxidase-labeled GABAergic terminals formed symmetric synapses with nerve cell bodies and dendrites showing immunogold labeling for PNMT. In addition, the GAD-labeled terminals were presynaptic to other dendrites which appeared to have equal access to the antisera and gold markers, but failed to exhibit detectable immunoreactivity for PNMT. Both the PNMT-labeled and unlabeled somata and dendrites also received symmetric and asymmetric contacts from terminals containing neither GAD nor PNMT-immunoreactivity. We conclude that GABA is at least one of the inhibitory transmitters regulating adrenergic as well as non-adrenergic outflow from the RVL.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.

Related Publications

T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
May 1988, Brain research,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
September 1985, The Journal of comparative neurology,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
June 2005, The Journal of pharmacology and experimental therapeutics,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
June 1992, Brain research,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
September 1995, Brain research,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
December 2013, Journal of neurophysiology,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
October 2001, Brain research,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
February 2004, Brain research,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
July 1991, The American journal of physiology,
T A Milner, and V M Pickel, and J Chan, and V J Massari, and W H Oertel, and D H Park, and T H Joh, and D J Reis
October 2003, Cellular and molecular neurobiology,
Copied contents to your clipboard!