LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis in atherosclerosis. 2020

Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

BACKGROUND Atherosclerosis (AS) is the main pathological basis of coronary heart disease, cerebral infarction and peripheral vascular disease, which seriously endanger people's life and health. In recent years, long non-coding RNA (lncRNA) has been found to be involved in gene expression regulation, but the research on AS is still in the initial stage. In this study, we mainly studied the role of HCG11 in patients with AS. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR) was used to detect the expression of HCG11 and miR-144 in the serum of AS patients and healthy volunteers. Oxidation Low Lipoprotein (Ox-LDL), interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) radiation were used to establish human vascular smooth muscle cells (VSMCs) in vitro model. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The apoptosis rate was determined by flow cytometry (FACS) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining. The expression levels of Forkhead box protein F1 (FOXF1), B cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) were detected by qRT-PCR. Luciferase gene reporter and RNA pull down experiments confirmed the relationship between HCG11 and miR-144, miR-144 and FOXF1. RESULTS This study showed that HCG11 was significantly upregulated in patients with AS, while miR-144 was down-regulated in patients with AS. Ox-LDL and IL-6 in VSMCs induced up-regulation of HCG11 and down-regulation of miR-144. Overexpression of HCG11 promoted the proliferation and inhibited apoptosis of VSMCs. Luciferase gene reporter gene assay showed that HCG11 could bind to miR-144, and miR-144 could bind to FOXF1. Overexpression of miR-144 reversed the effect of HCG11 on VSMCs. CONCLUSIONS LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D050197 Atherosclerosis A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA. Atherogenesis,Atherogeneses,Atheroscleroses
D051858 Forkhead Transcription Factors A subclass of winged helix DNA-binding proteins that share homology with their founding member fork head protein, Drosophila. Forkhead Box Protein,Forkhead Box Transcription Factor,Forkhead Protein,Forkhead Transcription Factor,Forkhead Box Proteins,Forkhead Box Transcription Factors,Forkhead Proteins,Fox Transcription Factors,Box Protein, Forkhead,Box Proteins, Forkhead,Factor, Forkhead Transcription,Protein, Forkhead,Protein, Forkhead Box,Proteins, Forkhead Box,Transcription Factor, Forkhead,Transcription Factors, Forkhead,Transcription Factors, Fox
D062085 RNA, Long Noncoding A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long
D032389 Myocytes, Smooth Muscle Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE). Smooth Muscle Cells,Cell, Smooth Muscle,Cells, Smooth Muscle,Myocyte, Smooth Muscle,Smooth Muscle Cell,Smooth Muscle Myocyte,Smooth Muscle Myocytes
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
March 2020, European review for medical and pharmacological sciences,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
December 2019, European review for medical and pharmacological sciences,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
November 2022, Orthopaedic surgery,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
October 2019, European review for medical and pharmacological sciences,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
January 2023, Open medicine (Warsaw, Poland),
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
February 2019, Biochemical and biophysical research communications,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
February 2023, Biochemical genetics,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
July 2021, Genomics,
Yi Liu, and Xiyun Cui, and Cong Wang, and Sihai Zhao
January 2022, Cancer biomarkers : section A of Disease markers,
Copied contents to your clipboard!