Exosomes derived from human mesenchymal stem cells preserve mouse islet survival and insulin secretion function. 2020

Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Islet cell death and loss of function after isolation and before transplantation is considered a key barrier to successful islet transplantation outcomes. Mesenchymal stem cells (MSCs) have been used to protect isolated islets owing to their paracrine potential partially through the secretion of vascular endothelial growth factor (VEGF). The paracrine functions of MSCs are also mediated, at least in part, by the release of extracellular vesicles including exosomes. In the present study, we examined (i) the effect of exosomes from human MSCs on the survival and function of isolated mouse islets and (ii) whether exosomes contain VEGF and the potential impact of exosomal VEGF on the survival of mouse islets. Isolated mouse islets were cultured for three days with MSC-derived exosomes (MSC-Exo), MSCs, or MSC-conditioned media without exosomes (MSC-CM-without-Exo). We investigated the effects of the exosomes, MSCs, and conditioned media on islet viability, apoptosis and function. Besides the expression of apoptotic and pro-survival genes, the production of human and mouse VEGF proteins was evaluated. The MSCs and MSC-Exo, but not the MSC-CM-without-Exo, significantly decreased the percentage of apoptotic cells and increased islet viability following the downregulation of pro-apoptotic genes and the upregulation of pro-survival factors, as well as the promotion of insulin secretion. Human VEGF was observed in the isolated exosomes, and the gene expression and protein production of mouse VEGF significantly increased in islets cultured with MSC-Exo. MSC-derived exosomes are as efficient as parent MSCs for mitigating cell death and improving islet survival and function. This cytoprotective effect was probably mediated by VEGF transfer, suggesting a pivotal strategy for ameliorating islet transplantation outcomes.

UI MeSH Term Description Entries

Related Publications

Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
April 2022, International journal of molecular sciences,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
March 2014, International journal of molecular sciences,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
March 2019, Stem cells and development,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
February 2021, Current medical science,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
May 2023, Molecular therapy : the journal of the American Society of Gene Therapy,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
August 2015, Zhonghua yi xue za zhi,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
September 2018, Xenotransplantation,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
December 2016, Osteoarthritis and cartilage,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
July 2018, Stem cell research & therapy,
Somayeh Keshtkar, and Maryam Kaviani, and Fatemeh Sabet Sarvestani, and Mohammad Hossein Ghahremani, and Mahdokht Hossein Aghdaei, and Ismail H Al-Abdullah, and Negar Azarpira
August 2017, Stem cell research & therapy,
Copied contents to your clipboard!