Processing of a plant vacuolar protein precursor in vitro. 1987

T Hattori, and S Ichihara, and K Nakamura

A precursor for sporamin A, the storage protein of the tuberous roots of sweet potato deposited in the vacuole, is synthesized on membrane-bound polysomes and has an extra peptide of 37 amino acids at the N-terminus of the mature form, which can be divided into an N-terminal putative signal peptide sequence (residues -37 to -17) and a segment enriched with charged amino acids (residues -16 to -1) [Hattori, T., et al. (1985) Plant Mol. Biol. 5, 313-320]. We examined the in vitro processing of the sporamin A precursor using a messenger RNA derived from a full-length cDNA by the SP6 transcription system. When the in vitro translation in a wheat germ cell-free system was carried out in the presence of dog pancreas microsomal membranes, the precursor polypeptide (Mr = 24,000) was processed into an intermediate form still larger than the mature polypeptide (Mr = 20,000). The processed intermediate form was also produced by addition of microsomal membranes from sweet potato and potato in the translation reaction, although less efficiently compared to dog membranes. Moreover, Escherichia coli cells expressing sporamin precursor accumulated a polypeptide with the same electrophoretic mobility as the intermediate form produced in vitro. The processing by dog membranes is accompanied by translocation of the polypeptide across the membranes as assayed by resistance to externally added proteases. The N-terminal amino acid sequencing analysis of [3H]leucine-labelled intermediate form produced in vitro by dog membranes indicated that co-translational processing of the sporamin precursor by endoplasmic reticulum membranes removes only the signal peptide segment from the extra peptide, and suggested that the charged segment following the signal peptide is removed post-translationally during the transport of sporamin into vacuole. The significance of two-step processing of plant vacuolar protein precursor is discussed in relation to the two-step processing of precursors for yeast vacuolar proteins and animal lysosomal proteins.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011198 Solanum tuberosum A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts. Potatoes,Potato,Solanum tuberosums,tuberosum, Solanum,tuberosums, Solanum
D011498 Protein Precursors Precursors, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

T Hattori, and S Ichihara, and K Nakamura
February 1991, Proceedings of the National Academy of Sciences of the United States of America,
T Hattori, and S Ichihara, and K Nakamura
January 2019, Frontiers in plant science,
T Hattori, and S Ichihara, and K Nakamura
April 2020, The New phytologist,
T Hattori, and S Ichihara, and K Nakamura
January 2015, Frontiers in plant science,
T Hattori, and S Ichihara, and K Nakamura
November 1999, The international journal of biochemistry & cell biology,
T Hattori, and S Ichihara, and K Nakamura
December 2010, Plant signaling & behavior,
T Hattori, and S Ichihara, and K Nakamura
November 1990, The Plant cell,
T Hattori, and S Ichihara, and K Nakamura
August 2005, Current opinion in plant biology,
T Hattori, and S Ichihara, and K Nakamura
June 1990, Archives of biochemistry and biophysics,
Copied contents to your clipboard!