Cytochrome b558 monitors the steady state redox state of the ubiquinone pool in the aerobic respiratory chain of Escherichia coli. 1987

R M Lorence, and K Carter, and G N Green, and R B Gennis

The aerobic respiratory chain of Escherichia coli contains two terminal oxidases, the cytochrome o complex and the cytochrome d complex. These both function as ubiquinol-8 oxidases and reduce molecular oxygen to water. Electron flux is funneled from a variety of dehydrogenases, such as succinate dehydrogenase, through ubiquinone-8, to either of the terminal oxidases. A strain was examined which lacks the intact cytochrome d complex, but which overproduces one of the two subunits of this complex, cytochrome b558. This cytochrome, in the absence of the other subunit of the oxidase complex, does not possess catalytic activity. It is shown that the extent of reduction of cytochrome b558 in the E. coli membrane monitors the extent of reduction of the quinone pool in the membrane. The activity of each purified oxidase was examined in phospholipid vesicles as a function of the amount of ubiquinone-8 incorporated in the bilayer. A ratio of ubiquinol-8:phospholipid as low as 1:200 is sufficient to saturate each oxidase. The maximal turnover of the oxidases in the reconstituted system is considerably faster than observed in E. coli membranes, demonstrating that the rate-limiting step in the E. coli respiratory chain is at the dehydrogenases which feed electrons into the system.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron

Related Publications

R M Lorence, and K Carter, and G N Green, and R B Gennis
December 1987, Biochemistry,
R M Lorence, and K Carter, and G N Green, and R B Gennis
July 1969, European journal of biochemistry,
R M Lorence, and K Carter, and G N Green, and R B Gennis
November 1985, The Journal of biological chemistry,
R M Lorence, and K Carter, and G N Green, and R B Gennis
March 2011, Biochimie,
R M Lorence, and K Carter, and G N Green, and R B Gennis
June 2007, Microbiology (Reading, England),
R M Lorence, and K Carter, and G N Green, and R B Gennis
August 2013, FEBS letters,
R M Lorence, and K Carter, and G N Green, and R B Gennis
February 2010, Journal of bacteriology,
R M Lorence, and K Carter, and G N Green, and R B Gennis
August 1975, FEBS letters,
R M Lorence, and K Carter, and G N Green, and R B Gennis
November 1987, The Biochemical journal,
Copied contents to your clipboard!