Denoising RF Data via Robust Principal Component Analysis: Results in Ultrasound Elastography. 2020

Md Ashikuzzaman, and Hassan Rivaz

Ultrasound data often suffers from an excessive amount of noise especially from deep tissue or in synthetic aperture imaging where the acoustic wave is weak. Such noisy data renders Time Delay Estimation (TDE) inaccurate in the context of ultrasound elastography. Herein, a novel two-step elastography technique is presented to ensure accurate TDE while dealing with noisy ultrasound data. In the first step, instead of one, we acquire several Radio-Frequency (RF) frames from both pre- and post-deformed positions of the tissue. We stack the frames collected from pre- and post-deformed planes in separate data matrices. Since each set is collected from the same level of tissue compression, we assume that the Casorati data matrices exhibit underlying low-rank structures, which are sought by taking the low-rank and sparse decomposition framework into account. This Robust Principal Component Analysis (RPCA) approach removes the random noise from the datasets as sparse error components. In the second step, we select one frame from each denoised ensemble and employ GLobal Ultrasound Elastography (GLUE) to perform the strain elastography. We call the proposed technique RPCA-GLUE. Our preliminary validation of RPCA-GLUE against simulation phantoms containing hard and soft inclusions proves its robustness to large noise. Substantial improvement in Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) has also been observed. Simulation results show that in the presence of large noise, the proposed method substantially improves CNR from 5.0 to 22.6 in a soft inclusion and from 2.2 to 21.7 in a hard inclusion phantom.

UI MeSH Term Description Entries
D011846 Radio Waves Electromagnetic waves with frequencies between about 3 kilohertz (very low frequency - VLF) and 300,000 megahertz (extremely high frequency - EHF). They are used in television and radio broadcasting, land and satellite communications systems, radionavigation, radiolocation, and DIATHERMY. The highest frequency radio waves are MICROWAVES. Hertzian Waves,High Frequency Waves,Radiowave,Radiowaves,Short Waves,Very High Frequency Waves,Frequency Wave, High,Frequency Waves, High,High Frequency Wave,Radio Wave,Short Wave,Wave, High Frequency,Wave, Radio,Wave, Short,Waves, Hertzian,Waves, High Frequency,Waves, Radio,Waves, Short
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D054459 Elasticity Imaging Techniques Non-invasive imaging methods based on the mechanical response of an object to a vibrational or impulsive force. It is used for determining the viscoelastic properties of tissue, and thereby differentiating soft from hard inclusions in tissue such as microcalcifications, and some cancer lesions. Most techniques use ultrasound to create the images - eliciting the response with an ultrasonic radiation force and/or recording displacements of the tissue by Doppler ultrasonography. ARFI Imaging,Acoustic Radiation Force Impulse Imaging,Elastograms,Elastography,Magnetic Resonance Elastography,Sonoelastography,Tissue Elasticity Imaging,Vibro-Acoustography,ARFI Imagings,Elasticity Imaging Technique,Elasticity Imaging, Tissue,Elasticity Imagings, Tissue,Elastogram,Elastographies,Elastographies, Magnetic Resonance,Elastography, Magnetic Resonance,Imaging Technique, Elasticity,Imaging Techniques, Elasticity,Imaging, ARFI,Imaging, Tissue Elasticity,Imagings, ARFI,Imagings, Tissue Elasticity,Magnetic Resonance Elastographies,Resonance Elastographies, Magnetic,Resonance Elastography, Magnetic,Sonoelastographies,Technique, Elasticity Imaging,Techniques, Elasticity Imaging,Tissue Elasticity Imagings,Vibro Acoustography,Vibro-Acoustographies
D059629 Signal-To-Noise Ratio The comparison of the quantity of meaningful data to the irrelevant or incorrect data. Ratio, Signal-To-Noise,Ratios, Signal-To-Noise,Signal To Noise Ratio,Signal-To-Noise Ratios
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Md Ashikuzzaman, and Hassan Rivaz
January 2018, Journal of healthcare engineering,
Md Ashikuzzaman, and Hassan Rivaz
December 2019, Advances in neural information processing systems,
Md Ashikuzzaman, and Hassan Rivaz
February 2018, Journal of neuroscience methods,
Md Ashikuzzaman, and Hassan Rivaz
September 2018, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Md Ashikuzzaman, and Hassan Rivaz
May 2024, IEEE transactions on neural networks and learning systems,
Md Ashikuzzaman, and Hassan Rivaz
July 2019, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Md Ashikuzzaman, and Hassan Rivaz
November 2009, Neural computation,
Md Ashikuzzaman, and Hassan Rivaz
August 2012, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Md Ashikuzzaman, and Hassan Rivaz
December 2011, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Copied contents to your clipboard!