Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. 1987

M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase

Fluorescence and optical detection of triplet state magnetic resonance (ODMR) spectroscopy have been employed to study the complexes formed between single-stranded polynucleotides and Escherichia coli ssb gene products (SSB) in which tryptophans 40, 54, and 88 are selectively, one residue at a time, replaced by phenylalanine using site-specific oligonucleotide mutagenesis. Fluorescence titrations and ODMR results indicate that tryptophans 40 and 54 are the only tryptophan residues in E. coli single-stranded DNA binding protein that are involved in stabilizing the protein-nucleic acid complexes via stacking interactions. Wavelength-selected ODMR measurements on E. coli SSB reveal the presence of two spectrally distinct tryptophan sites (Khamis, M. I., Casas-Finet, J. R., and Maki, A. H. (1987) J. Biol. Chem. 262, 1725-1733). Our present results indicate that tryptophan 54 belongs to the blue-shifted site, while tryptophan 40 belongs to the red-shifted site of the protein.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011071 Poly T A group of thymine nucleotides in which the phosphate residues of each thymine nucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Poly dT,Polythymidylic Acids,Thymine Polynucleotides,Polydeoxythymidylate,Acids, Polythymidylic,Polynucleotides, Thymine,dT, Poly
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D011119 Polynucleotides BIOPOLYMERS composed of NUCLEOTIDES covalently bonded in a chain. The most common examples are DNA and RNA chains. Polynucleotide
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
February 1989, European journal of biochemistry,
M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
July 1988, Mutation research,
M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
December 1990, Microbiological reviews,
M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
February 2014, Nucleic acids research,
M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
May 2010, The Journal of biological chemistry,
M I Khamis, and J R Casas-Finet, and A H Maki, and J B Murphy, and J W Chase
May 2012, Journal of mass spectrometry : JMS,
Copied contents to your clipboard!