Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. 2020

Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
Department of Plant Physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Soldmannstrasse 15, 17487, Greifswald, Germany. vajiheh.safavirizi@uni-greifswald.de.

Flooding periods, as one probable consequence of climate change, will lead more frequently to plant hypoxic stress. Hypoxia sensing and signaling in the root, as the first organ encountering low oxygen, is therefore crucial for plant survival under flooding. Nitric oxide has been shown to be one of the main players involved in hypoxia signaling through the regulation of ERFVII transcription factors stability. Using SNP as NO donor, we investigated the NO-responsive genes, which showed a significant response to hypoxia. We identified 395 genes being differentially regulated under both hypoxia and SNP-treatment. Among them, 251 genes showed up- or down-regulation under both conditions which were used for further biological analysis. Functional classification of these genes showed that they belong to different biological categories such as primary carbon and nitrogen metabolism (e.g. glycolysis, fermentation, protein and amino acid metabolism), nutrient and metabolites transport, redox homeostasis, hormone metabolism, regulation of transcription as well as response to biotic and abiotic stresses. Our data shed light on the NO-mediated gene expression modulation under hypoxia and provides potential targets playing a role in hypoxia tolerance. These genes are interesting candidates for further investigating their role in hypoxia signaling and survival.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010937 Plant Growth Regulators Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins. Phytohormone,Phytohormones,Plant Growth Regulator,Plant Hormone,Plant Hormones,Growth Regulators, Plant,Regulators, Plant Growth,Growth Regulator, Plant,Hormone, Plant,Hormones, Plant,Regulator, Plant Growth
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D055868 Floods Sudden onset water phenomena with different speed of occurrence. These include flash floods, seasonal river floods, and coastal floods, associated with CYCLONIC STORMS; TIDALWAVES; and storm surges. Flooding, Catastrophic,Catastrophic Flooding,Catastrophic Floodings,Floodings, Catastrophic
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant

Related Publications

Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
January 2013, Planta,
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
August 2022, Biotech (Basel (Switzerland)),
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
September 2022, International journal of molecular sciences,
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
December 2023, Plant signaling & behavior,
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
July 2014, Journal of plant physiology,
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
August 2016, Journal of plant physiology,
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
January 2015, Methods in molecular biology (Clifton, N.J.),
Vajiheh Safavi-Rizi, and Marco Herde, and Christine Stöhr
February 2018, Ecotoxicology and environmental safety,
Copied contents to your clipboard!