Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. 1987

J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees

The three-dimensional structure of the cofactors of the reaction center of Rhodobacter sphaeroides R-26 has been determined by x-ray diffraction and refined at a resolution of 2.8 A with an R value of 26%. The main features of the structure are similar to the ones determined for Rhodopseudomonas viridis [Michel, H., Epp, O. & Deisenhofer, J. (1986) EMBO J. 5, 2445-2451]. The cofactors are arranged along two branches, which are approximately related to each other by a 2-fold symmetry axis. The structure is well suited to produce light-induced charge separation across the membrane. Most of the structural features predicted from physical and biochemical measurements are confirmed by the x-ray structure.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic

Related Publications

J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
September 1986, FEBS letters,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
May 1991, FEBS letters,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
September 2019, Biochemistry. Biokhimiia,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
January 1995, Biophysical journal,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
February 1994, Journal of bioenergetics and biomembranes,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
May 1993, FEBS letters,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
December 1986, Biochimica et biophysica acta,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
November 1989, FEBS letters,
J P Allen, and G Feher, and T O Yeates, and H Komiya, and D C Rees
June 1991, Biochemistry,
Copied contents to your clipboard!