Formaldehyde exposure induces regulatory T cell-mediated immunosuppression via calcineurin-NFAT signalling pathway. 2020

Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
Jeonbuk Department of inhalation Research, National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.

In this study, we investigated the effects of Formaldehyde (FA) exposure on splenic immune responses wherein helper T cells become activated and differentiate into effector T and regulatory T cells. BALB/c mice were exposed to two FA concentrations (1.38 mg/m3 and 5.36 mg/m3) for 4 h/day and 5 days/week for 2 weeks. FA-induced immune responses were examined by the production of cytokines, expression of mRNAs, and distributions of helper T cells and regulatory T cells. Moreover, expression of calcineurin and NFATs, regulatory T cell-related signalling proteins, were evaluated. FA exposure suppressed Th2-, Th1-, and Th17-related splenic cytokines in a dose-dependent manner. mRNA expression of splenic cytokines was also decreased by FA exposure, which correlated with decreased cytokine expression. In parallel, FA exposure promoted T cell differentiation into regulatory T cells in a dose-dependent manner supported by the expression of calcineurin and NFAT1. Taken together, our results indicated that FA exposure increases the number of regulatory T cells via calcineurin-NFAT signalling, thereby leading to effector T cell activity suppression with decreased T cell-related cytokine secretion and mRNA expression. These findings provide insight into the mechanisms underlying the adverse effects of FA and accordingly have general implications for human health, particularly in occupational settings.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D012130 Respiratory Hypersensitivity A form of hypersensitivity affecting the respiratory tract. It includes ASTHMA and RHINITIS, ALLERGIC, SEASONAL. Airway Hyperresponsiveness,Hypersensitivity, Respiratory,Airway Hyper-Responsiveness,Airway Hyper Responsiveness,Airway Hyperresponsivenesses,Hyper-Responsiveness, Airway,Hyperresponsiveness, Airway,Respiratory Hypersensitivities
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
May 2022, Scientific reports,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
March 2014, European journal of immunology,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
October 2016, The Canadian journal of cardiology,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
November 2021, Cell proliferation,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
March 2013, Molecules and cells,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
April 2012, EMBO molecular medicine,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
January 2021, The Journal of investigative dermatology,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
September 2006, Nature,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
September 2005, Nihon rinsho. Japanese journal of clinical medicine,
Jeongsik Park, and Hyo-Seon Yang, and Mi-Kyung Song, and Dong Im Kim, and Kyuhong Lee
December 2022, Journal of enzyme inhibition and medicinal chemistry,
Copied contents to your clipboard!