Light and electron microscopic observations of the autonomic innervation of the mouse gallbladder mucosa. A histochemical, cytochemical, and secretory study. 1977

T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler

The autonomic innervation of the mouse gallbladder mucosa was studied using histo- and cytochemical methods. In a light microscopic investigation the distribution of acetylcholinesterase (AChE) activity and formaldehyde-induced fluorescence was studied histochemically. Nerve fibres and small varicosities showed concentrations of AChE activity very close to the epithelium in the subepithelial connective tissue. No adrenergic nerves were observed in the mucosa. When using the electron microscope and employing the potassium permanganate fixation/staining technique only one sort of axonal enlargement was encountered, viz. the cholinergic type. These varicosities contained numerous agranular vesicles (500-600 A in diameter). No varicosities of the adrenergic (dense-cored vesicles) type were observed. Signs of increased secretory activity in the epithelium were observed in the first few minutes after cholinergic stimulation. After repeated in vivo stimulation, there was an almost total depletion of glycoprotein granules, best seen when using the cytochemical PA-CrA-silver technique. The findings suggest that the subepithelial connective tissue and the epithelium of the mouse gallbladder mucosa have a cholinergic innervation.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D005260 Female Females
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
August 1985, The Journal of pathology,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
January 1982, Cell and tissue research,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
June 1966, Bulletin of the New York Academy of Medicine,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
January 1978, Acta anatomica,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
February 1975, Oral surgery, oral medicine, and oral pathology,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
January 1969, Archives of ophthalmology (Chicago, Ill. : 1960),
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
January 1986, ORL; journal for oto-rhino-laryngology and its related specialties,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
June 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
December 1979, The Tokushima journal of experimental medicine,
T Wahlin, and H Axelsson, and T H Schiebler, and J Winckler
May 1969, The Anatomical record,
Copied contents to your clipboard!