Peptide transport in yeast: utilization of leucine- and lysine-containing peptides by Saccharomyces cerevisiae. 1977

R Marder, and J M Becker, and F Naider

A variety of leucine-containing di- and tripeptides and two lysine-containing dipeptides supported the growth of strain Z1-2D, a leucine, lysine auxotroph of Saccharomyces cerevisiae. However, (Lys)2, (Lys)3, (Lys)4, and (Lys)5 as well as Gly-Leu-Gly, three tetra- and one pentapeptide containing leucine were not utilized by the mutant. Cellular peptidases released leucine or lysine from all of these non-growth-supporting peptides, suggesting that the failure of strain Z1-2D to utilize these compounds reflects their failure to enter the yeast. Competition studies employing phenylalanine or non-leucine-containing peptides showed that the uptake of peptides into S. cerevisiae Z1-2D is distinct from that of amino acids and that di- and oligopeptides may share a common transport system. The failure of strain Z1-2D to utilize any peptide larger than (Leu)3 may indicate a transport size limit. Such a size limit would influence the construction of models that explain the action of yeast mating factors.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

R Marder, and J M Becker, and F Naider
January 1973, Biochimica et biophysica acta,
R Marder, and J M Becker, and F Naider
January 1977, Archives of biochemistry and biophysics,
R Marder, and J M Becker, and F Naider
March 1976, Journal of bacteriology,
R Marder, and J M Becker, and F Naider
August 1986, Journal of general microbiology,
R Marder, and J M Becker, and F Naider
October 2020, Bulletin of experimental biology and medicine,
R Marder, and J M Becker, and F Naider
January 1974, The Journal of biological chemistry,
R Marder, and J M Becker, and F Naider
April 1989, FEBS letters,
R Marder, and J M Becker, and F Naider
November 2002, Applied and environmental microbiology,
R Marder, and J M Becker, and F Naider
January 1993, Annual review of biochemistry,
Copied contents to your clipboard!