Threonyl-transfer ribonucleic acid synthetase from Escherichia coli: subunit structure and genetic analysis of the structural gene by means of a mutated enzyme and of a specialized transducing lambda bacteriophage. 1977

H Hennecke, and A Böck, and J Thomale, and G Nass

Threonyl-transfer ribonucleic acid synthetase (ThrRS) has been purified from a strain of Escherichia coli that shows a ninefold overproduction of this enzyme. Determination of the molecular weight of the purified, native enzyme by gel chromatography and by polyacrylamide gel electrophoresis at different gel concentrations yielded apparent molecular weight values of 150,000 and 161,000, respectively. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a single protein band of 76,000-dalton size. From these results an alpha(2) subunit structure can be inferred. A mutant with a structurally altered ThrRS, which had been obtained by selection for resistance against the antibiotic borrelidin, was used to map the position of the ThrRS structural gene (thrS) by P1 transductions. It was found that thrS is located in the immediate neighborhood of pheS and pheT, which are the structural genes for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid (tRNA) synthetase, the gene order being aroD-pheT-pheS-thrS. A lambda phage that was previously shown to specifically transduce pheS, pheT, and also the structural gene for the translation initiation factor IF3 can complement the defect of the altered ThrRS of the borrelidin-resistant strain. This phage also stimulates the synthesis of the 76,000, molecular-weight polypeptide of ThrRS in ultraviolet light-irradiated. E. coli cells. These results indicate that the genes for ThrRS, alpha and beta subunits of phenylalanyl-tRNA synthetase, and initiation factor IF3 are immediately adjacent on the E. coli chromosome.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013914 Threonine-tRNA Ligase An enzyme that activates threonine with its specific transfer RNA. EC 6.1.1.3. Threonyl T RNA Synthetase,Thr-tRNA Ligase,Threonyl-tRNA Synthetase,Ligase, Thr-tRNA,Ligase, Threonine-tRNA,Synthetase, Threonyl-tRNA,Thr tRNA Ligase,Threonine tRNA Ligase,Threonyl tRNA Synthetase

Related Publications

H Hennecke, and A Böck, and J Thomale, and G Nass
December 1980, Journal of bacteriology,
H Hennecke, and A Böck, and J Thomale, and G Nass
January 1977, Journal of bacteriology,
H Hennecke, and A Böck, and J Thomale, and G Nass
July 1974, Proceedings of the National Academy of Sciences of the United States of America,
H Hennecke, and A Böck, and J Thomale, and G Nass
May 1969, Journal of bacteriology,
H Hennecke, and A Böck, and J Thomale, and G Nass
September 1980, Journal of bacteriology,
Copied contents to your clipboard!