Gangliosides in the nervous system during development and regeneration. 1986

A J Yates

Gangliosides are present in nervous tissues of echinoderms and chordates, but the amounts and patterns differ widely. There are changes in the ganglioside contents of nervous tissues during development in most animals studied. To a large extent, regional differences and changes with development and degeneration in ganglioside composition reflect changing and different proportions of cellular types and subcellular organelles within the tissue. GM1 and GM4 are enriched in myelin; GD1a may be a marker for dendritic arborization. During regeneration of fish optic nerve and rat sciatic nerve there is an increased amount of ganglioside proximal to the regenerating axon tips, which may largely be a result of accumulation. This could provide a relatively large reservoir of ganglioside to become incorporated into the sprouting axolemma. Gangliosides added exogenously to growth medium can induce neuritogenesis of several types of neurons. The mechanisms of this action are unknown but may be related to nerve growth factor, microskeletal organization, membrane fluidity, and other factors. Gangliosides injected into young animals affect brain development, but further studies are required to determine these effects more specifically. Ganglioside administration increases the number of sprouts in regenerating peripheral nerves, but does not seem to accelerate axonal elongation. Parenterally administered gangliosides alter the recovery of brain tissue from a variety of types of lesions, and clinical trials are in progress to determine if they are of benefit in human neurological disorders. The biochemical mechanisms of these in vivo ganglioside effects are poorly understood, but may involve modulation of several enzyme systems as well as other properties of neural membranes, such as fluidity. It is possible that gangliosides may play similar roles and operate through some of the same mechanisms in developing and regenerating nervous tissues.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A J Yates
January 2023, Neural regeneration research,
A J Yates
March 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A J Yates
January 1983, Neurochemistry international,
A J Yates
January 1983, Neurochemistry international,
A J Yates
November 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A J Yates
March 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A J Yates
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!