Metformin attenuates steroidogenesis in ovarian follicles of the broiler breeder hen. 2020

Evelyn A Weaver, and Ramesh Ramachandran
Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA.

The follicular hierarchy in broiler breeder chicken ovary is often deranged due to excessive ovarian follicular recruitment, resulting in a condition that resembles polycystic ovary syndrome (PCOS) in women. Metformin is widely prescribed to correct PCOS and has been shown to affect granulosa cell functions in humans and rodent models. The objectives of this study are to determine the effects of metformin on signal transduction pathways, gene expression related to steroidogenesis, and progesterone secretion from granulosa cells isolated from the most recently recruited preovulatory and prehierarchical follicles of broiler breeder chickens. Granulosa cells were treated with 0, 1, 10, or 20 mM of metformin in the presence of FSH. The abundance of pAMPK, pACC, pERK, and pAkt was determined by Western blotting. The expression of genes related to progesterone biosynthesis was quantified by qPCR. Progesterone concentrations in culture media were quantified by ELISA. Metformin treatment did not have an effect on the abundance of pAMPK and pACC in prehierarchical follicles but significantly decreased the abundance of pERK and pAkt in a dose-dependent manner in preovulatory and prehierarchical follicles. The expression of genes related to steroidogenesis such as FSHR, STAR, CYP11A1, HSD3B, and progesterone secretion was significantly decreased in response to metformin treatment in a dose-dependent manner. Our data suggest that metformin treatment attenuates progesterone secretion via AMPK-independent pathways in granulosa cells of prehierarchical and preovulatory follicles of broiler breeder hens. Further studies are required to determine if metformin administration could ameliorate ovarian dysfunction in obese broiler breeder hens.

UI MeSH Term Description Entries
D008687 Metformin A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289) Dimethylguanylguanidine,Dimethylbiguanidine,Glucophage,Metformin HCl,Metformin Hydrochloride,HCl, Metformin,Hydrochloride, Metformin
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Evelyn A Weaver, and Ramesh Ramachandran
July 2017, General and comparative endocrinology,
Evelyn A Weaver, and Ramesh Ramachandran
April 1984, Poultry science,
Evelyn A Weaver, and Ramesh Ramachandran
August 1995, Poultry science,
Evelyn A Weaver, and Ramesh Ramachandran
February 2000, Clinical endocrinology,
Evelyn A Weaver, and Ramesh Ramachandran
January 2005, Zoological science,
Evelyn A Weaver, and Ramesh Ramachandran
January 1978, Hormone research,
Evelyn A Weaver, and Ramesh Ramachandran
February 1990, General and comparative endocrinology,
Evelyn A Weaver, and Ramesh Ramachandran
July 1976, Poultry science,
Copied contents to your clipboard!