| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D004795 |
Enzyme Stability |
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. |
Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme |
|
| D000071189 |
Autophagy-Related Protein-1 Homolog |
A serine/threonine-protein kinase that functions in AUTOPHAGY in response to starvation. It acts on the PHOSPHATIDYLINOSITOL 3-KINASE complex PIK3C3 to regulate AUTOPHAGOSOME formation. It also functions as both a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) and is activated by AMPK, which it also negatively regulates. |
Serine-Threonine Protein Kinase ULK1,ULK1 Protein,Unc-51 Like Autophagy Activating Kinase 1,Unc-51-Like Kinase 1,Autophagy Related Protein 1 Homolog,Serine Threonine Protein Kinase ULK1,Unc 51 Like Autophagy Activating Kinase 1,Unc 51 Like Kinase 1 |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001343 |
Autophagy |
The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. |
Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy |
|
| D015425 |
Myocardial Reperfusion |
Generally, restoration of blood supply to heart tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. Reperfusion can be induced to treat ischemia. Methods include chemical dissolution of an occluding thrombus, administration of vasodilator drugs, angioplasty, catheterization, and artery bypass graft surgery. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing MYOCARDIAL REPERFUSION INJURY. |
Coronary Reperfusion,Reperfusion, Myocardial,Coronary Reperfusions,Myocardial Reperfusions,Reperfusion, Coronary,Reperfusions, Coronary,Reperfusions, Myocardial |
|
| D015428 |
Myocardial Reperfusion Injury |
Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. |
Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial |
|
| D015854 |
Up-Regulation |
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. |
Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation |
|
| D017382 |
Reactive Oxygen Species |
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. |
Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen |
|
| D048868 |
Adaptor Proteins, Signal Transducing |
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes |
Signal Transducing Adaptor Proteins |
|