Effect of high sucrose diet on insulin secretion and insulin action. A study in rats with non-insulin-dependent diabetes induced by streptozotocin. 1987

M Kergoat, and D Bailbe, and B Portha
Laboratory of Development Physiology, University of Paris, France.

The effects of chronic high sucrose feeding for 1 month on in vivo and in vitro insulin secretion and on in vivo insulin action were studied in rats with non-insulin-dependent diabetes. As compared to the standard diet, the high sucrose diet induced an increase of the in vivo insulin response to an intravenous load and deteriorated the glucose tolerance as attested by significantly lower rates of glucose disappearance (K values, p less than 0.001). The increased insulin secretion in response to glucose in vivo seems to be related to a slight increase of the pancreatic B-cell reactivity to glucose, since it was still observed in vitro with the isolated perfused pancreas preparation. By contrast, B cells of sucrose-fed rats exhibited in vitro a significantly lowered (p less than 0.01) response to acetylcholine and arginine. The insulin action in the sucrose-fed diabetic rats was quantified in vivo with the insulin-glucose clamp technique. The effects of different concentrations of insulin on glucose production and glucose utilisation were studied in anaesthetized rats while in the postabsorptive state. The basal glucose utilisation was found significantly higher (p less than 0.001) in sucrose-fed rats. During the clamp studies the glucose utilisation induced by submaximal (450 mU/l) insulin level was significantly less important (p less than 0.01) in the sucrose-fed rats than in the chow-fed rats. Following a maximal hyperinsulinaemia (5000 mU/l) the glucose utilisation was similar in both groups. This suggests that insulin-mediated glucose uptake is decreased over the range of submaximal plasma insulin levels in the sucrose-fed diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

M Kergoat, and D Bailbe, and B Portha
January 1988, Eksperimentalna meditsina i morfologiia,
M Kergoat, and D Bailbe, and B Portha
August 1996, Clinical and experimental pharmacology & physiology,
M Kergoat, and D Bailbe, and B Portha
January 1992, Acta physiologica, pharmacologica et therapeutica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y [de] la Asociacion Latinoamericana de Farmacologia,
M Kergoat, and D Bailbe, and B Portha
November 1993, Diabetes/metabolism reviews,
M Kergoat, and D Bailbe, and B Portha
June 2012, Phytomedicine : international journal of phytotherapy and phytopharmacology,
M Kergoat, and D Bailbe, and B Portha
September 1984, Diabetes,
M Kergoat, and D Bailbe, and B Portha
February 1996, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Copied contents to your clipboard!