| D011554 |
Pseudopodia |
A dynamic actin-rich extension of the surface of an animal cell used for locomotion or prehension of food. |
Axopodia,Filopodia,Lamellipodia,Lobopodia,Microspikes, Cell Surface,Reticulopodia,Pseudopodium,Cell Surface Microspike,Cell Surface Microspikes,Lamellipodias,Microspike, Cell Surface,Surface Microspike, Cell,Surface Microspikes, Cell |
|
| D002465 |
Cell Movement |
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. |
Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell |
|
| D000199 |
Actins |
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. |
F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015027 |
Zebrafish |
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. |
Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra |
|
| D051376 |
Actin-Related Protein 2-3 Complex |
A complex of seven proteins including ARP2 PROTEIN and ARP3 PROTEIN that plays an essential role in maintenance and assembly of the CYTOSKELETON. Arp2-3 complex binds WASP PROTEIN and existing ACTIN FILAMENTS, and it nucleates the formation of new branch point filaments. |
Arp2-3 Complex,Arp2-3 Protein Complex,Actin Related Protein 2 3 Complex,Arp2 3 Complex,Arp2 3 Protein Complex |
|
| D020929 |
Mitogen-Activated Protein Kinase Kinases |
A dual-specific protein kinase family whose members are components in protein kinase cascades activated by diverse stimuli. These MAPK kinases phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES and are themselves phosphorylated by MAP KINASE KINASE KINASES. JNK kinases (also known as SAPK kinases) are a subfamily. |
MAP Kinase Kinases,MAPK Kinase,MAPK Kinases,MAPK-ERK Kinase,MAPK-ERK Kinases,MAPKKs,MEK,MEKs,Mitogen-Activated Protein Kinase Kinase,MAP-ERK Kinase,MAPKK,Map Kinase Kinase,Kinase Kinase, Map,Kinase Kinases, MAP,Kinase, MAP-ERK,Kinase, MAPK,Kinase, MAPK-ERK,Kinase, Map Kinase,Kinases, MAP Kinase,Kinases, MAPK,Kinases, MAPK-ERK,MAP ERK Kinase,MAPK ERK Kinase,MAPK ERK Kinases,Mitogen Activated Protein Kinase Kinase,Mitogen Activated Protein Kinase Kinases |
|
| D020935 |
MAP Kinase Signaling System |
An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. |
MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways |
|
| D022001 |
Focal Adhesions |
An anchoring junction of the cell to a non-cellular substrate. It is composed of a specialized area of the plasma membrane where bundles of the ACTIN CYTOSKELETON terminate and attach to the transmembrane linkers, INTEGRINS, which in turn attach through their extracellular domains to EXTRACELLULAR MATRIX PROTEINS. |
Adhesion Plaques,Cell-Matrix Adherens Junctions,Focal Contacts,Adherens Junction, Cell-Matrix,Adherens Junctions, Cell-Matrix,Adhesion Plaque,Adhesion, Focal,Adhesions, Focal,Cell Matrix Adherens Junctions,Cell-Matrix Adherens Junction,Contact, Focal,Contacts, Focal,Focal Adhesion,Focal Contact,Junction, Cell-Matrix Adherens,Junctions, Cell-Matrix Adherens,Plaque, Adhesion,Plaques, Adhesion |
|