Cisplatin nephrotoxicity: in vitro studies with precision-cut rabbit renal cortical slices. 1987

J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
Department of Toxicology, University of Arizona, Tucson 85724.

Severe nephrotoxic side effects limit the use of cisplatin, a potent anticancer drug. In this study, precision-cut renal cortical slices from rabbits were evaluated as a cisplatin nephrotoxicity model. Cortical slices accumulated approximately 180 ppm (195 ppm Pt = 10(-3) M) of platinum(II) after 18 hr of incubation in medium containing 10(-3) M cisplatin. Dose- and time-dependent toxic responses for clinically relevant concentrations of cisplatin (10(-3)-10(-5) M) were apparent using leakage of intracellular K+, ATP, and lactate dehydrogenase (LDH) to determine cell damage. Histopathologic changes were also produced. Intracellular ATP levels dropped significantly after 6 hr of incubation in 10(-3) M cisplatin, and after 12 hr with 10(-4) M cisplatin. Similarly, intracellular K+ levels decreased significantly by 6 hr of incubation with 10(-3) M cisplatin but remained at control levels for 18 hr in the presence of 10(-4) M cisplatin. Decrements in intracellular LDH levels were not seen until after 12 hr of incubation in 10(-3) M cisplatin. The noncytotoxic isomer transplatin at 10(-3) M was not accumulated by slices; however, intracellular ATP levels were depressed. Of the viability parameters evaluated, intracellular K+ and ATP were found to be optimal indicators. Other active platinum analogs, carboplatin and iproplatin, also caused dose- and time-dependent leakage of intracellular K+ and ATP from renal cortical slices. The ranking of nephrotoxicity of the platinate compounds within this system at concentrations adjusted to approximate equivalent therapeutic activity was similar to that observed in vivo (cisplatin = iproplatin greater than carboplatin greater than transplatin). These results suggest that precision-cut renal cortical slices comprise a viable in vitro model for platinum-induced nephrotoxicity studies.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009944 Organoplatinum Compounds Organic compounds which contain platinum as an integral part of the molecule. Compounds, Organoplatinum
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
January 2013, Xenobiotica; the fate of foreign compounds in biological systems,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
January 2000, In vitro & molecular toxicology,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
December 1994, Toxicology in vitro : an international journal published in association with BIBRA,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
December 1996, Cell biology and toxicology,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
December 1996, Toxicology and applied pharmacology,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
November 1999, Toxicology and applied pharmacology,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
November 2016, European journal of pharmacology,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
January 1995, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
June 1994, Journal of pharmacological and toxicological methods,
J S Phelps, and A J Gandolfi, and K Brendel, and R T Dorr
June 2004, Toxicology in vitro : an international journal published in association with BIBRA,
Copied contents to your clipboard!