EVALUATION OF NEUTRON AMBIENT DOSE EQUIVALENT IN CARBON-ION RADIOTHERAPY WITH ENERGY SCANNING. 2020

Shinnosuke Matsumoto, and Shunsuke Yonai
Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.

In carbon-ion radiotherapy (CIRT), secondary neutrons are produced by nuclear interactions in the beamline devices or patient. Herein, the characteristics of secondary neutrons in CIRT with energy scanning (ES) were evaluated. Neutron ambient dose equivalents (H*(10)) were measured using WENDI-II. The neutron energy spectrum was calculated using the Monte Carlo simulation. Measurement and calculation were performed under realistic case scenarios using maximum beam energies (Emax) of 290, 350 and 400 MeV u -1. Moreover, H*(10) in ES was compared with H*(10) in range-shifter scanning (RS) and hybrid scanning (HS). H*(10) in Emax = 290 MeV u-1 was 65% less than that in Emax = 400 MeV u-1. At Emax = 350 MeV u-1, H*(10) in ES at θ = 120 was 42% of that at θ = 60. The neutron dose in ES CIRT decreased to approximately 60 and 70% of that in RS and HS CIRT, respectively, at 50-cm distance from the beam axis.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009502 Neutrons Electrically neutral elementary particles found in all atomic nuclei except light hydrogen; the mass is equal to that of the proton and electron combined and they are unstable when isolated from the nucleus, undergoing beta decay. Slow, thermal, epithermal, and fast neutrons refer to the energy levels with which the neutrons are ejected from heavier nuclei during their decay. Neutron
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D063193 Heavy Ion Radiotherapy The use of a heavy ion particle beam for radiotherapy, such as the HEAVY IONS of CARBON. Carbon Ion Radiation Therapy,Carbon Ion Radiotherapy,Carbon Ion Therapy,Heavy Ion Radiation Therapy,Heavy Ion Therapy,Carbon Ion Therapies,Heavy Ion Radiotherapies,Heavy Ion Therapies,Radiotherapies, Heavy Ion,Radiotherapy, Carbon Ion,Radiotherapy, Heavy Ion,Therapies, Carbon Ion,Therapies, Heavy Ion,Therapy, Carbon Ion,Therapy, Heavy Ion

Related Publications

Shinnosuke Matsumoto, and Shunsuke Yonai
October 2014, Radiation protection dosimetry,
Shinnosuke Matsumoto, and Shunsuke Yonai
November 2008, Medical physics,
Shinnosuke Matsumoto, and Shunsuke Yonai
December 2017, Radiation protection dosimetry,
Shinnosuke Matsumoto, and Shunsuke Yonai
December 2010, Physics in medicine and biology,
Shinnosuke Matsumoto, and Shunsuke Yonai
September 1969, Health physics,
Shinnosuke Matsumoto, and Shunsuke Yonai
March 2012, Radiation protection dosimetry,
Shinnosuke Matsumoto, and Shunsuke Yonai
May 2012, Medical physics,
Shinnosuke Matsumoto, and Shunsuke Yonai
October 2019, The British journal of radiology,
Shinnosuke Matsumoto, and Shunsuke Yonai
January 2006, Radiation protection dosimetry,
Copied contents to your clipboard!