Bioavailability of the calcium salt of dl-methionine hydroxy analog compared with dl-methionine for nitrogen retention and the preference of nursery pigs for diets based on the 2 forms of methionine. 2020

Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
Department of Animal and Food Sciences, University of Kentucky, Lexington.

Experiments were conducted to determine the relative bioavailability (RBV) of the calcium salt of the hydroxy analog of dl-methionine (MHA-Ca, 84%) to dl-methionine (dl-Met, 99%) as Met sources fed to pigs. In experiment 1, 42 crossbred barrows (initial BW of 15.0 ± 0.7 kg) were allotted to 7 treatments in an N-balance study. The basal diet (BD) was formulated to contain 15.4% CP and 0.22% Met (70% of requirement). Diets included (1) BD, (2) BD + 0.025% dl-Met, (3) BD + 0.050% dl-Met, (4) BD + 0.075% dl-Met, (5) BD + 0.038% MHA-Ca, (6) BD + 0.077% MHA-Ca, and (7) BD + 0.115% MHA-Ca. An increase in dietary inclusion rates of both Met sources linearly increased (P < 0.01) N retained (g/d) and N retention (% of intake). Using linear slope-ratio regression, the RBV value of MHA-Ca to dl-Met for N retained (g/d) was 63.0% on a product-to-product basis (75.0% on an equimolar basis). In experiment 2, 40 crossbred barrows (initial BW of 15.5 ± 1.5 kg) were allotted to 5 treatments in another N-balance study. The BD was formulated to contain 17.0% CP and 0.22% Met (70% of requirement). Diets included (1) BD, (2) BD + 0.030% dl-Met, (3) BD + 0.060% dl-Met, (4) BD + 0.046% MHA-Ca, and (5) BD + 0.092% MHA-Ca. Increasing levels of dl-Met or MHA-Ca increased N retained (g/d) and N retention (% of intake) linearly (P < 0.001) and quadratically (P < 0.05). Using linear slope-ratio regression, a product-to-product RBV value of MHA-Ca to dl-Met was 68.4% (81.4% on an equimolar basis) for N retained (g/d). In experiment 3, 276 pigs (12 barrow and 11 gilt replicates; initial BW of 7.09 ± 1.1 kg) were used in 3 diet preference studies. Pigs were randomly allotted to 1 of 3 treatment comparisons of feed choice: (1) BD (0.23% Met) or BD + 0.07% dl-Met; (2) BD or BD + 0.0825% MHA-Ca, and (3) BD + 0.07% dl-Met or BD + 0.0825% MHA-Ca. Pigs consumed a higher percentage (55 vs. 45%; P = 0.008) of their total feed intake from the diet supplemented with 0.07% dl-Met in Comparison 1, but a lower percentage (45 vs. 55%; P = 0.003) of their total feed intake from the diet supplemented with 0.0825% MHA-Ca in Comparison 2. There was no diet preference for dl-Met or MHA-Ca in Comparison 3. The observed Met source preference differences occurred in the barrow replicates but not in the gilt replicates. These results demonstrated the mean RBV of MHA-Ca to dl-Met of 65.7% on a product-to-product (wt/wt) basis or 78.2% on an equimolar basis and that a preference for Met sources was observed in barrows but not in gilts.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
June 2021, Journal of animal science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
November 2012, Animal : an international journal of animal bioscience,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
February 1990, Poultry science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
January 1989, Archiv fur Tierernahrung,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
January 2006, Journal of animal science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
June 2002, Poultry science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
May 2011, Journal of animal science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
September 2019, Animal nutrition (Zhongguo xu mu shou yi xue hui),
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
August 1985, Poultry science,
Minqi Q Wang, and La T T Huyen, and Jung W Lee, and Sheila H Ramos, and John K Htoo, and La V Kinh, and Merlin D Lindemann
December 2014, Journal of animal science,
Copied contents to your clipboard!