Interleukin-2 production and response to interleukin-2 by peripheral blood mononuclear cells from patients after bone marrow transplantation: II. Patients receiving soybean lectin-separated and T cell-depleted bone marrow. 1987

K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
Laboratory of Cytokine Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.

The ability of peripheral blood mononuclear cells (PBMC) to produce and respond to interleukin-2 (IL-2) was evaluated in 50 recipients of HLA-identical bone marrow (BM) depleted of mature T cells by soybean agglutination and E rosetting (SBA-E-BM). In contrast to our previous findings in recipients of unfractionated marrow, during weeks 3 to 7 post-SBA-E-BM transplantation (BMT), PBMC from the majority of patients spontaneously released IL-2 into the culture medium. This IL-2 was not produced by Leu-11+ natural killer cells, which were found to be predominant in the circulation at this time, but by T11+, T3+, Ia antigen-bearing T cells. The IL-2 production could be enhanced by coculture with host PBMC frozen before transplant but not by stimulation with mitogenic amounts of OKT3 antibody, thus suggesting an in vivo activation of donor T cells or their precursors by host tissue. Spontaneous IL-2 production was inversely proportional to the number of circulating peripheral blood lymphocytes and ceased after 7 to 8 weeks post-SBA-E-BMT in most of the patients. In patients whose cells had ceased to produce IL-2 spontaneously or never produced this cytokine, neither coculture with host cells nor stimulation with OKT3 antibody thereafter induced IL-2 release through the first year posttransplant. Proliferative responses to exogenous IL-2 after stimulation with OKT3 antibody remained abnormal for up to 6 months post-SBA-E-BMT, unlike the responses of PBMC from recipients of conventional BM, which responded normally by 1 month post-BMT. However, the upregulation of IL-2 receptor expression by exogenous IL-2 was found to be comparable to normal controls when tested as early as 3 weeks post-SBA-E-BMT. Therefore, the immunologic recovery of proliferative responses to IL-2 and the appearance of cells regulating in vivo activation of T cells appear to be more delayed in patients receiving T cell-depleted BMT. Similar to patients receiving conventional BMT, however, the ability to produce IL-2 after mitogenic stimulation remains depressed for up to 1 year after transplantation.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D008228 Lymphoma, Non-Hodgkin Any of a group of malignant tumors of lymphoid tissue that differ from HODGKIN DISEASE, being more heterogeneous with respect to malignant cell lineage, clinical course, prognosis, and therapy. The only common feature among these tumors is the absence of giant REED-STERNBERG CELLS, a characteristic of Hodgkin's disease. Non-Hodgkin Lymphoma,Diffuse Mixed Small and Large Cell Lymphoma,Diffuse Mixed-Cell Lymphoma,Diffuse Small Cleaved-Cell Lymphoma,Diffuse Undifferentiated Lymphoma,Lymphatic Sarcoma,Lymphoma, Atypical Diffuse Small Lymphoid,Lymphoma, Diffuse,Lymphoma, Diffuse, Mixed Lymphocytic-Histiocytic,Lymphoma, High-Grade,Lymphoma, Intermediate-Grade,Lymphoma, Low-Grade,Lymphoma, Mixed,Lymphoma, Mixed Cell, Diffuse,Lymphoma, Mixed Lymphocytic-Histiocytic,Lymphoma, Mixed Small and Large Cell, Diffuse,Lymphoma, Mixed-Cell,Lymphoma, Mixed-Cell, Diffuse,Lymphoma, Non-Hodgkin's,Lymphoma, Non-Hodgkin, Familial,Lymphoma, Non-Hodgkins,Lymphoma, Nonhodgkin's,Lymphoma, Nonhodgkins,Lymphoma, Pleomorphic,Lymphoma, Small Cleaved Cell, Diffuse,Lymphoma, Small Cleaved-Cell, Diffuse,Lymphoma, Small Non-Cleaved-Cell,Lymphoma, Small Noncleaved-Cell,Lymphoma, Small and Large Cleaved-Cell, Diffuse,Lymphoma, Undifferentiated,Lymphoma, Undifferentiated, Diffuse,Lymphosarcoma,Mixed Small and Large Cell Lymphoma, Diffuse,Mixed-Cell Lymphoma,Mixed-Cell Lymphoma, Diffuse,Non-Hodgkin's Lymphoma,Reticulosarcoma,Reticulum Cell Sarcoma,Reticulum-Cell Sarcoma,Sarcoma, Lymphatic,Sarcoma, Reticulum-Cell,Small Cleaved-Cell Lymphoma, Diffuse,Small Non-Cleaved-Cell Lymphoma,Small Noncleaved-Cell Lymphoma,Undifferentiated Lymphoma,Diffuse Lymphoma,Diffuse Lymphomas,Diffuse Mixed Cell Lymphoma,Diffuse Mixed-Cell Lymphomas,Diffuse Small Cleaved Cell Lymphoma,Diffuse Undifferentiated Lymphomas,High-Grade Lymphoma,High-Grade Lymphomas,Intermediate-Grade Lymphoma,Intermediate-Grade Lymphomas,Low-Grade Lymphoma,Low-Grade Lymphomas,Lymphatic Sarcomas,Lymphocytic-Histiocytic Lymphoma, Mixed,Lymphocytic-Histiocytic Lymphomas, Mixed,Lymphoma, Diffuse Mixed-Cell,Lymphoma, Diffuse Undifferentiated,Lymphoma, High Grade,Lymphoma, Intermediate Grade,Lymphoma, Low Grade,Lymphoma, Mixed Cell,Lymphoma, Mixed Lymphocytic Histiocytic,Lymphoma, Non Hodgkin,Lymphoma, Non Hodgkin's,Lymphoma, Non Hodgkins,Lymphoma, Nonhodgkin,Lymphoma, Small Non Cleaved Cell,Lymphoma, Small Noncleaved Cell,Lymphosarcomas,Mixed Cell Lymphoma,Mixed Cell Lymphoma, Diffuse,Mixed Lymphocytic-Histiocytic Lymphoma,Mixed Lymphocytic-Histiocytic Lymphomas,Mixed Lymphoma,Mixed Lymphomas,Mixed-Cell Lymphomas,Non Hodgkin Lymphoma,Non Hodgkin's Lymphoma,Non-Cleaved-Cell Lymphoma, Small,Non-Hodgkins Lymphoma,Noncleaved-Cell Lymphoma, Small,Nonhodgkin's Lymphoma,Nonhodgkins Lymphoma,Pleomorphic Lymphoma,Pleomorphic Lymphomas,Reticulosarcomas,Reticulum Cell Sarcomas,Reticulum-Cell Sarcomas,Sarcoma, Reticulum Cell,Small Cleaved Cell Lymphoma, Diffuse,Small Non Cleaved Cell Lymphoma,Small Non-Cleaved-Cell Lymphomas,Small Noncleaved Cell Lymphoma,Small Noncleaved-Cell Lymphomas,Undifferentiated Lymphoma, Diffuse,Undifferentiated Lymphomas
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell

Related Publications

K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
January 1995, Blood,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
July 1990, Transplantation,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
November 1987, Experimental hematology,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
January 2003, European neurology,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
September 1984, Infection and immunity,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
June 1987, Clinical and experimental immunology,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
February 1989, Transplantation proceedings,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
August 2005, Experimental hematology,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
February 2010, Blood,
K Welte, and C A Keever, and J Levick, and M A Bonilla, and V J Merluzzi, and R Mertelsmann, and R Evans, and R J O'Reilly
May 1988, Journal of the neurological sciences,
Copied contents to your clipboard!