Induced erythroleukemia differentiation: cellular and molecular aspects. 1987

R A Rifkind, and M Sheffery, and P A Marks
DeWitt Wallace Research Laboratories, Memorial Sloan-Kettering Cancer Center, New York.

MELC may be induced to terminal erythroid differentiation by HMBA and other agents. Although the mechanism is not known, changes in cell function and gene expression can be identified during an early "latent" period, prior to commitment to terminal differentiation. These include a decrease in diacylglycerol concentration and in Ca+2 and phospholipid-dependent protein kinase C activity, accompanied by suppression of c-myb and c-myc gene transcription, a fall in p53 protein, and an increase in c-fos mRNA. Commitment is first detected by 12 hours and is associated with persistent suppression of c-myb gene transcription. Transcription of the erythroid-specific genes, alpha 1 and beta maj globin, is increased 10- to 30-fold, whereas synthesis of rRNA is suppressed, and there is activation or suppression of a number of additional genes that remain to be characterized. The potential regulatory roles of changes in protein kinase C activity and in proto-oncogene expression in initiating and sustaining the process of differentiation also remain to be elucidated.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic

Related Publications

R A Rifkind, and M Sheffery, and P A Marks
May 2008, Journal of molecular medicine (Berlin, Germany),
R A Rifkind, and M Sheffery, and P A Marks
October 1987, Molecular and cellular biochemistry,
R A Rifkind, and M Sheffery, and P A Marks
September 1993, FEBS letters,
R A Rifkind, and M Sheffery, and P A Marks
January 1983, Progress in clinical and biological research,
R A Rifkind, and M Sheffery, and P A Marks
December 1994, Human & experimental toxicology,
R A Rifkind, and M Sheffery, and P A Marks
June 1984, Proceedings of the National Academy of Sciences of the United States of America,
R A Rifkind, and M Sheffery, and P A Marks
June 2008, Ai zheng = Aizheng = Chinese journal of cancer,
R A Rifkind, and M Sheffery, and P A Marks
January 1983, Doklady Akademii nauk SSSR,
R A Rifkind, and M Sheffery, and P A Marks
January 1963, Symposia of the Society for Experimental Biology,
R A Rifkind, and M Sheffery, and P A Marks
December 2005, Best practice & research. Clinical endocrinology & metabolism,
Copied contents to your clipboard!