Comparison of tRNA gene transcription complexes formed in vitro and in nuclei. 1987

J M Huibregtse, and C F Evans, and D R Engelke
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.

The nucleoprotein structure of single-copy tRNA genes in yeast nuclei was examined by DNase I footprinting and compared with that of complexes formed in vitro between the same genes and transcription factor C. Transcription factor C bound to both the 5' and 3' intragenic promoters of the tRNA(SUP53Leu) gene in vitro, protecting approximately 30 base pairs at the 3' promoter (B block) and 40 base pairs at the 5' promoter (A block) and causing enhanced DNase I cleavages between the protected regions. Binding to the two sites was independent of the relative orientation of the two sites on the helix and was eliminated by a single point mutation in the 3' promoter. The chromosomal tRNA(SUP53Leu) and tRNA(UCGSer) genes showed a pattern of protection and enhanced cleavages similar to that observed in vitro, indicating that the stable complexes formed in vitro accurately reflect at least some aspects of the nucleoprotein structure of the genes in chromatin.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D003852 Deoxyribonucleoproteins Proteins conjugated with deoxyribonucleic acids (DNA) or specific DNA.
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012345 RNA, Transfer, Amino Acid-Specific A group of transfer RNAs which are specific for carrying each one of the 20 amino acids to the ribosome in preparation for protein synthesis. Amino Acid-Specific Transfer RNA,Amino Acid-Specific tRNA,Transfer RNA, Amino Acid-Specific,tRNA-Amino Acid,RNA, Transfer, Amino Acid Specific,tRNA (Amino Acid),Acid, tRNA-Amino,Acid-Specific tRNA, Amino,Amino Acid Specific Transfer RNA,Amino Acid Specific tRNA,Transfer RNA, Amino Acid Specific,tRNA Amino Acid,tRNA, Amino Acid-Specific
D012356 RNA, Transfer, Leu A transfer RNA which is specific for carrying leucine to sites on the ribosomes in preparation for protein synthesis. Leucine-Specific tRNA,Transfer RNA, Leu,tRNALeu,tRNA(Leu),Leu Transfer RNA,Leucine Specific tRNA,RNA, Leu Transfer,tRNA, Leucine-Specific

Related Publications

J M Huibregtse, and C F Evans, and D R Engelke
October 1989, The Journal of biological chemistry,
J M Huibregtse, and C F Evans, and D R Engelke
February 1983, The Journal of biological chemistry,
J M Huibregtse, and C F Evans, and D R Engelke
July 1984, The EMBO journal,
J M Huibregtse, and C F Evans, and D R Engelke
August 2008, Genes & development,
J M Huibregtse, and C F Evans, and D R Engelke
January 1988, Methods in molecular biology (Clifton, N.J.),
J M Huibregtse, and C F Evans, and D R Engelke
August 1984, The Journal of biological chemistry,
J M Huibregtse, and C F Evans, and D R Engelke
January 1981, The Journal of biological chemistry,
J M Huibregtse, and C F Evans, and D R Engelke
June 1979, Cell,
J M Huibregtse, and C F Evans, and D R Engelke
February 1981, Nucleic acids research,
Copied contents to your clipboard!