The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. 1987

R Murray
John Stuart Research Laboratories, Quaker Oats Company, Barrington.

A variety of beverages formulated to provide fluid, carbohydrates, and electrolytes during and following exercise are commercially available. Such 'sport drinks' commonly contain 4 to 8% carbohydrate (as glucose, fructose, sucrose or maltodextrins) and small amounts of electrolytes (most often sodium, potassium, and chloride). The efficacy of consuming such beverages has been questioned primarily because of concern that beverage carbohydrate content may inhibit gastric emptying rate and fluid absorption during exercise, thereby jeopardizing physiological homeostasis and impairing exercise performance. Gastric motor activity, and consequently gastric emptying rate, is governed by neural and humoral feedback provided by receptors found in the gastric musculature and proximal small intestine. Gastric emptying rate may be influenced by a variety of factors including, but not limited to, the caloric content, volume, osmolality, temperature, and pH of the ingested fluid, diurnal and interindividual variation, metabolic state (rest/exercise), and the ambient temperature. The caloric content of the ingested fluid appears to be the most important variable governing gastric emptying rate, providing a mean caloric efflux from the stomach of 2.0 to 2.5 kcal/min for ingested fluid volumes less than 400 ml. At rest, gastric emptying is inhibited by solutions containing calories in a manner independent of the nutrient source (i.e. carbohydrate, fat or protein). Consequently, plain water is known to empty from the stomachs of resting subjects at rates faster than solutions containing calories. Gastric emptying is increasingly inhibited as the caloric content of the ingested fluid increases. During moderate exercise (less than 75% VO2max), gastric emptying occurs at a rate similar to that during rest; more intense exercise appears to inhibit gastric emptying. When fluids are consumed at regular intervals throughout prolonged exercise (greater than 2 hours), postexercise aspiration of stomach contents reveals that solutions containing up to 10% carbohydrate empty at rates similar to plain water. There is ample physiological justification for the addition of glucose, fructose, sodium, potassium and chloride to fluid replacement beverages. Fluid absorption in the small intestine is stimulated by glucose and sodium (and to a lesser extent by fructose and other electrolytes). Glucose and sodium are absorbed via a common membrane carrier in the mucosal epithelium of the proximal small intestine. The potentiation of sodium uptake by glucose establishes an osmotic gradient for fluid absorption.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005746 Gastric Emptying The evacuation of food from the stomach into the duodenum. Emptying, Gastric,Emptyings, Gastric,Gastric Emptyings
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001628 Beverages Liquids that are suitable for drinking. (From Merriam Webster Collegiate Dictionary, 10th ed) Beverage
D014882 Water-Electrolyte Balance The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM. Fluid Balance,Electrolyte Balance,Balance, Electrolyte,Balance, Fluid,Balance, Water-Electrolyte,Water Electrolyte Balance

Related Publications

R Murray
October 1989, Medicine and science in sports and exercise,
R Murray
February 1992, Journal of applied physiology (Bethesda, Md. : 1985),
R Murray
January 1993, Medicine and science in sports and exercise,
R Murray
December 1986, Medicine and science in sports and exercise,
R Murray
June 2005, International journal of sport nutrition and exercise metabolism,
R Murray
April 1988, Medicine and science in sports and exercise,
R Murray
December 1993, International journal of sport nutrition,
R Murray
May 1998, Journal of applied physiology (Bethesda, Md. : 1985),
R Murray
November 2001, Medicine and science in sports and exercise,
R Murray
September 1967, Journal of applied physiology,
Copied contents to your clipboard!