Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing. 2020

Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA.

Site-directed RNA editing approaches offer great potential to correct genetic mutations in somatic cells while avoiding permanent off-target genomic edits. Nuclease-dead RNA-targeting CRISPR-Cas systems recruit functional effectors to RNA molecules in a programmable fashion. Here, we demonstrate a Streptococcus pyogenes Cas9-ADAR2 fusion system that uses a 3' modified guide RNA (gRNA) to enable adenosine-to-inosine (A-to-I) editing of specific bases on reporter and endogenously expressed mRNAs. Due to the sufficient nature of the 3' gRNA extension sequence, we observe that Cas9 gRNA spacer sequences are dispensable for directed RNA editing, revealing that Cas9 can act as an RNA-aptamer-binding protein. We demonstrate that Cas9-based A-to-I editing is comparable in on-target efficiency and off-target specificity with Cas13 RNA editing versions. This study provides a systematic benchmarking of RNA-targeting CRISPR-Cas designs for reversible nucleotide-level conversion at the transcriptome level.

UI MeSH Term Description Entries
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000076987 CRISPR-Associated Protein 9 An RNA-guided endodeoxyribonuclease that associates with CRISPR SEQUENCES in STREPTOCOCCUS PYOGENES and other bacteria where it participates in an adaptive immune function to cleave foreign DNA complimentary to small GUIDE RNA (sgRNAs). Structurally, Cas9 consists of an ALPHA-HELIX module and a nuclease module connected by a single helix. The nuclease module contains two enzymatic domains: RuvC, which cleaves non-target DNA strand, and an HNH nuclease domain, which cleaves the target strand. Specificity for the DNA target depends on the presence of a protospacer adjacent motif (PAM) sequence, a 2-6 nucleotide DNA sequence immediately following the sequence targeted by Cas9. Cas9 Endonuclease,Cas9 Enzyme,Cas9 Protein,CRISPR Associated Protein 9,Endonuclease, Cas9,Enzyme, Cas9
D000081246 RNA-Seq High-throughput nucleotide sequencing techniques developed for determining and analyzing the composition of the TRANSCRIPTOME of a sample. Whole Transcriptome Shotgun Sequencing
D000094704 RNA, Guide, CRISPR-Cas Systems A component of CRISPR-Cas SYSTEMS. Cas endodeoxyribonucleases assemble with a guide RNA complex, a hybrid of CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA) molecules, to form an active complex that cleaves DNA. crRNA and tracrRNA can be synthetically fused into a single RNA molecule, namely single guide RNA. Synthetic sgRNA is used with CRISPR-Cas SYSTEMS for targeted GENE EDITING. CRISPR Guide RNA,CRISPR-Cas Systems sgRNA (Single Guide RNA),Guide RNA (CRISPR-Cas Systems),Guide RNA, CRISPR-Cas Systems,RNA, CRISPR Guide,RNA, Guide (CRISPR-Cas Systems),RNA, Single Guide,RNA, Single-Guide,Single Guide RNA,Single-Guide RNA,Transactivating crRNA,crRNA,crRNA, Transactivating,sgRNA (CRISPR-Cas Systems),sgRNA (Single-Guide RNA),tracrRNA,Guide RNA, CRISPR,Guide RNA, CRISPR Cas Systems,Guide RNA, Single
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D017393 RNA Editing A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE, KINETOPLASTIDA). RNA, Messenger, Editing,Editing, RNA,Editings, RNA,RNA Editings
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell

Related Publications

Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
December 2020, Pharmaceutics,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
January 2019, Biotechnology advances,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
March 2013, Nature biotechnology,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
March 2020, Molecular therapy. Nucleic acids,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
April 2015, Trends in microbiology,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
August 2022, Seminars in cancer biology,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
January 2022, Methods in molecular biology (Clifton, N.J.),
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
January 2021, Progress in molecular biology and translational science,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
September 2023, International journal of molecular sciences,
Ryan J Marina, and Kristopher W Brannan, and Kevin D Dong, and Brian A Yee, and Gene W Yeo
August 2023, ACS nano,
Copied contents to your clipboard!