Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: Interactions between CYP1A2 and heme oxygenase-1. 2021

J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.

Heme oxygenase 1 (HO-1) and the cytochromes P450 (P450s) are endoplasmic reticulum-bound enzymes that rely on the same protein, NADPH-cytochrome P450 reductase (POR), to provide the electrons necessary for substrate metabolism. Although the HO-1 and P450 systems are interconnected owing to their common electron donor, they generally have been studied separately. As the expressions of both HO-1 and P450s are affected by xenobiotic exposure, changes in HO-1 expression can potentially affect P450 function and, conversely, changes in P450 expression can influence HO-1. The goal of this study was to examine interactions between the P450 and HO-1 systems. Using bioluminescence resonance energy transfer (BRET), HO-1 formed HO-1•P450 complexes with CYP1A2, CYP1A1, and CYP2D6, but not all P450s. Studies then focused on the HO-1-CYP1A2 interaction. CYP1A2 formed a physical complex with HO-1 that was stable in the presence of POR. As expected, both HO-1 and CYP1A2 formed BRET-detectable complexes with POR. The POR•CYP1A2 complex was readily disrupted by the addition of HO-1, whereas the POR•HO-1 complex was not significantly affected by the addition of CYP1A2. Interestingly, enzyme activities did not follow this pattern. BRET data suggested substantial inhibition of CYP1A2-mediated 7-ethoxyresorufin de-ethylation in the presence of HO-1, whereas its activity was actually stimulated at subsaturating POR. In contrast, HO-1-mediated heme metabolism was inhibited at subsaturating POR. These results indicate that HO-1 and CYP1A2 form a stable complex and have mutual effects on the catalytic behavior of both proteins that cannot be explained by a simple competition for POR.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D051547 Heme Oxygenase-1 A ubiquitous stress-responsive enzyme that catalyzes the oxidative cleavage of HEME to yield IRON; CARBON MONOXIDE; and BILIVERDIN. Hemeoxygenase 1,Heme Oxygenase 1,Oxygenase-1, Heme
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D019388 Cytochrome P-450 CYP1A2 A cytochrome P450 enzyme subtype that has specificity for relatively planar heteroaromatic small molecules, such as CAFFEINE and ACETAMINOPHEN. CYP1A2,Phenacetin O-Dealkylase,CYP 1A2,Caffeine Demethylase,Cytochrome P-450 LM(4),Cytochrome P-450 LM4,Cytochrome P-450d,Cytochrome P450 1A2,CYP1A2, Cytochrome P-450,Cytochrome P 450 CYP1A2,Cytochrome P 450 LM4,Cytochrome P 450d,Demethylase, Caffeine,O-Dealkylase, Phenacetin,P-450 LM4, Cytochrome,Phenacetin O Dealkylase

Related Publications

J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
January 2005, The Journal of biological chemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
August 2003, The Journal of biological chemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
December 2006, Biochemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
August 2012, Biochemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
October 2014, The Journal of biological chemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
February 2004, Free radical biology & medicine,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
September 2010, Biochemical and biophysical research communications,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
May 2003, The Journal of biological chemistry,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
March 2011, Molecular pharmacology,
J Patrick Connick, and James R Reed, and George F Cawley, and Wayne L Backes
August 2001, The Journal of biological chemistry,
Copied contents to your clipboard!