[Localization of a histidine residue in the binding site for the initiating substrate of E. coli RNA-polymerase]. 1987

M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov

E. coli RNA polymerase was selectively labelled in the presence of promoters at a histidine residue of the beta-subunit by treatment with GDP beta-imidazolide and then with [alpha-32P]UTP (or [alpha-33P]UTP). Partial cyanogen bromide cleavage of the labelled polypeptide afforded a series of "single-hit" labelled peptides, the electrophoretic pattern of which suggested that the labelling site was His1237. This conclusion was confirmed by a similar pattern obtained with products of the cyanogen bromide cleavage of a radioactive peptide obtained by the limited trypsinolysis (C-terminal peptide consisting of 423 amino acid residues). Interpretation of our earlier results in favour of His1116 as the labelling point (Dokl. Acad. nauk SSSR, 1985, v. 281, p. 723) was incorrect due to the electrophoretic "compression" of three labelled peptide bands.

UI MeSH Term Description Entries
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants

Related Publications

M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
January 1982, FEBS letters,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
January 1989, Bioorganicheskaia khimiia,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
July 1989, FEBS letters,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
January 1966, Acta biochimica Polonica,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
February 1988, Biochemical and biophysical research communications,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
January 1985, Doklady Akademii nauk SSSR,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
March 1975, The Biochemical journal,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
August 1979, Biochimica et biophysica acta,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
February 1999, FEBS letters,
M A Grachev, and E A Lukhtanov, and A A Mustaev, and M N Abdukaiumov, and I V Rabinov
January 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!