L-lactate enzyme electrode obtained with immobilized respiratory chain from Escherichia coli and oxygen probe for specific determination of L-lactate in yogurt, wine and blood. 1987

E Adamowicz, and C Burstein
Université Paris 7-Tour 54, Hall de Biotechnologies, France.

An enzyme electrode for L-lactate measurements in various biological media was prepared with an immobilized bacterial respiratory chain fixed to a Clark electrode. The enzymatic film, which was easy to prepare, contained bacteria immobilized in gelatin, tanned with glutaraldehyde. This electrode was sensitive to 0.1 mM L-lactate and could be utilized to 10 mM. The apparent K50 was 5 mM. Less than 8% of the respiration rate with L-lactate was measured with D-lactate and succinate. The competitive inhibitors D-lactate and pyruvate had a K50 of 50 mM. They could be quantitatively measured by inhibition in a range between 5 and 50 mM. It was also possible to discriminate between L-lactate and various metabolites of the respiratory chain: L-malate, succinate, 3-glycero-phosphate or NAD(P)H. Growing E. coli on 1% D-L-lactate as the sole carbon source in minimal medium induced L-lactate respiration tenfold. All other respiratory activities remained below 10% of the activity with L-lactate. A computerized instrument allowed successive measurements every 3 min for more than 10 h with the same enzymatic film. Most of the measured samples required dilution but no clarification or purification. This enzyme electrode may have many applications in basic research (metabolism, enzymology) and applied research (blood, yogurt, juices, wine).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D003611 Dairy Products Raw and processed or manufactured milk and milk-derived products. These are usually from cows (bovine) but are also from goats, sheep, reindeer, and water buffalo. Dairy Product,Product, Dairy,Products, Dairy
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004800 Enzymes, Immobilized Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields. Immobilized Enzymes,Enzyme, Immobilized,Immobilized Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D014920 Wine Fermented juice of fresh grapes or of other fruit or plant products used as a beverage. Wines

Related Publications

E Adamowicz, and C Burstein
November 1983, Biotechnology and bioengineering,
E Adamowicz, and C Burstein
March 1991, Analytical chemistry,
E Adamowicz, and C Burstein
July 1974, Analytical chemistry,
E Adamowicz, and C Burstein
October 1993, Indian journal of biochemistry & biophysics,
E Adamowicz, and C Burstein
March 1986, Analytical chemistry,
E Adamowicz, and C Burstein
November 1987, Journal of general microbiology,
Copied contents to your clipboard!