Feeding frequency for lactating cows: effects on rumen fermentation and blood metabolites and hormones. 1986

J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
National Institute for Research in Dairying, Shinfield, Reading.

1. The present paper reports the effects on rumen fermentation and plasma metabolites and hormones of giving fixed rations of hay and high-cereal concentrates at different meal frequencies to lactating cows. In Expt 1 the total ration was given in two and twenty-four meals daily and in Expts 2-4 the concentrates were given in two and five or six meals and the hay in two meals daily. The diets contained 600-920 g concentrates/kg. 2. In Expt 1, minimum rumen pH was higher but mean pH was lower when cows were given their ration in twenty-four meals/d rather than two meals/d. 3. In all the experiments, the effects of increased meal frequency on the molar proportions of rumen volatile fatty acids (VFA) were small and not significant, although there was a general tendency for the proportion of acetic acid to increase and that of propionic acid to fall. Increasing the proportion of concentrates in the diet reduced the proportion of acetic acid and increased the proportions of propionic and n-valeric acids. 4. In Expt 3, more frequent feeding was found to reduce the concentration of non-esterified fatty acids in the blood, but changes in other metabolites were small and not significant. Increasing the proportion of concentrates in the diet reduced the concentrations of acetic acid and 3-hydroxybutyric acid and increased the concentrations of propionic acid and glucose. 5. The mean daily concentration of insulin in the blood was reduced by more frequent feeding of the higher-concentrate diet but not of the lower-concentrate diet. The concentration of glucagon also tended to fall with more frequent feeding. Increasing the proportion of concentrates in the diet increased the concentration of insulin. 6. More frequent feeding reduced the depression in milk-fat concentration caused by feeding the low-roughage diets. About three-quarters of the variation in milk-fat concentration could be related to changes in rumen VFA proportions, but the relations for the two meal frequencies had different intercepts although similar curves. The results suggest that milk-fat depression on low-roughage diets with twice-daily feeding was due to a change in rumen VFA proportions accompanied by elevated plasma insulin concentrations. The improvement in milk-fat concentration due to more frequent feeding could be explained partly by the small change in rumen VFA proportions and partly by a reduction in mean plasma insulin concentrations, but these mechanisms did not fully account for the milk-fat responses observed.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005232 Fatty Acids, Volatile Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans. Fatty Acids, Short-Chain,Short-Chain Fatty Acid,Volatile Fatty Acid,Acid, Short-Chain Fatty,Acid, Volatile Fatty,Fatty Acid, Short-Chain,Fatty Acid, Volatile,Fatty Acids, Short Chain,Short Chain Fatty Acid,Short-Chain Fatty Acids,Volatile Fatty Acids
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D005260 Female Females
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
November 1974, Journal of dairy science,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
August 2009, Animal science journal = Nihon chikusan Gakkaiho,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
May 2011, Journal of dairy science,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
January 2021, Animal science journal = Nihon chikusan Gakkaiho,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
May 2019, Animal science journal = Nihon chikusan Gakkaiho,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
January 1985, The British journal of nutrition,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
June 2012, Journal of animal physiology and animal nutrition,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
January 2023, Animal science journal = Nihon chikusan Gakkaiho,
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
June 2016, Animal nutrition (Zhongguo xu mu shou yi xue hui),
J D Sutton, and I C Hart, and W H Broster, and R J Elliott, and E Schuller
April 2019, Journal of animal science,
Copied contents to your clipboard!