Docking of chromaffin granules--a necessary step in exocytosis? 1987

T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
Dept. of Biochemistry, Biocenter of the University, Basel.

Putative docking of secretory vesicles comprising recognition of and attachment to future fusion sites in the plasma membrane has been investigated in chromaffin cells of the bovine adrenal medulla and in rat phaeochromocytoma (PC 12) cells. Upon permeabilization with digitonin, secretion can be stimulated in both cell types by increasing the free Ca2+-concentration to microM levels. Secretory activity can be elicited up to 1 hr after starting permeabilization and despite the loss of soluble cytoplasmic components indicating a stable attachment of granules to the plasma membrane awaiting the trigger for fusion. Docked granules can be observed in the electron microscope in permeabilized PC 12 cells which contain a large proportion of their granules aligned underneath the plasma membrane. The population of putatively docked granules in chromaffin cells cannot be as readily discerned due to the dispersal of granules throughout the cytoplasm. Further experiments comparing PC 12 and chromaffin cells suggest that active docking but not transport of granules can still be performed by permeabilized cells in the presence of Ca2+: a short (2 min) pulse of Ca2+ in PC 12 cells leads to the secretion of almost all releasable hormone over a 15 min observation period whereas, in chromaffin cells, with only a small proportion of granules docked, withdrawal of Ca2+ leads to an immediate halt in secretion. Transport of chromaffin granules from the Golgi to the plasma membrane docking sites seems to depend on a mechanism sensitive to permeabilization. This is shown by the difference in the amount of hormone released from the two permeabilized cell types, reflecting the contrast in the proportion of granules docked to the plasma membrane in PC 12 or chromaffin cells. Neither docking nor the docked state are influenced by cytochalasin B or colchicine. The permeabilized cell system is a valuable technique for the in vitro study of interaction between secretory vesicles and their target membrane.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010673 Pheochromocytoma A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298) Pheochromocytoma, Extra-Adrenal,Extra-Adrenal Pheochromocytoma,Extra-Adrenal Pheochromocytomas,Pheochromocytoma, Extra Adrenal,Pheochromocytomas,Pheochromocytomas, Extra-Adrenal
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000310 Adrenal Gland Neoplasms Tumors or cancer of the ADRENAL GLANDS. Adrenal Cancer,Adrenal Gland Cancer,Adrenal Neoplasm,Cancer of the Adrenal Gland,Neoplasms, Adrenal Gland,Adrenal Cancers,Adrenal Gland Cancers,Adrenal Gland Neoplasm,Adrenal Neoplasms,Cancer, Adrenal,Cancer, Adrenal Gland,Cancers, Adrenal,Cancers, Adrenal Gland,Neoplasm, Adrenal,Neoplasm, Adrenal Gland,Neoplasms, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
July 1997, Nature,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
September 1994, Annals of the New York Academy of Sciences,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
April 2008, Biophysical journal,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
January 1989, Journal of electron microscopy,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
October 2001, The Journal of biological chemistry,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
April 2003, Nature cell biology,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
January 1983, Nature,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
July 1994, Biochemistry,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
October 2004, The Journal of physiology,
T Schäfer, and U O Karli, and F E Schweizer, and M M Burger
April 1982, Cell biology international reports,
Copied contents to your clipboard!