The yeast ribosomal protein L32 and its gene. 1987

M D Dabeva, and J R Warner
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

The yeast ribosomal protein gene RPL32 of Saccharomyces cerevisiae is of particular interest for two reasons: 1) it is adjacent to another ribosomal protein gene, RP29, whose divergent transcription may be driven from the same control sequences, and 2) it appears that the splicing of its transcript is regulated by the product of the gene, ribosomal protein in L32. RPL32 has been analyzed in detail. It is essential for cell growth. Its sequence predicts L32 to be a protein of 105 amino acids, somewhat basic near the NH2 terminus, rather acidic near the COOH terminus, and homologous to ribosomal protein L30 of mammals. The reading frame has been confirmed by partial NH2-terminal analysis of L32. The nucleotide sequence also predicts an intron of 230 nucleotides, which begins with the unusual sequence GTCAGT and ends 40 nucleotides downstream of the consensus sequence TAC-TAAC. The intron has been confirmed by determination of the sequence of a cDNA clone. Transcription initiates 58 nucleotides upstream of the AUG initiation codon, and the polyadenylation site occurs 100 nucleotides downstream of the termination codon. Regulation of the transcription of ribosomal protein genes has been linked to two related consensus sequences. Analysis of the intergenic region between RP29 and RPL32 reveals three copies of these sequences. A deletion removing all three sequences reduces synthesis of a L32-LacZ fusion protein by more than 90%. Some residual activity, however, remains.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M D Dabeva, and J R Warner
March 1996, RNA (New York, N.Y.),
M D Dabeva, and J R Warner
September 2000, Molecular and cellular endocrinology,
M D Dabeva, and J R Warner
August 1990, Nucleic acids research,
M D Dabeva, and J R Warner
March 1988, Nucleic acids research,
M D Dabeva, and J R Warner
May 2023, Cancer medicine,
M D Dabeva, and J R Warner
June 1997, Journal of cellular biochemistry,
M D Dabeva, and J R Warner
March 1997, RNA (New York, N.Y.),
M D Dabeva, and J R Warner
July 1993, Nucleic acids research,
Copied contents to your clipboard!