Studies on the molecular organization of rat insulin secretory granules. 1987

J Michael, and R Carroll, and H H Swift, and D F Steiner
Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637.

Secretory granule-enriched fractions prepared from isolated rat islets of Langerhans, previously labeled in culture for 18 h with [3H]leucine, have been lysed and separated into pH 5.4 soluble and insoluble fractions by zonal sucrose gradient centrifugation. A high proportion of both labeled and immunoreactive rat insulins I and II were recovered in the insoluble granule core fraction in the expected ratio of approximately 60/40, respectively. Essentially equivalent amounts of the rat C-peptides on a molar basis were recovered in the granule supernatant fractions. The proportion of labeled proinsulin in the granule core fraction was less than 2% relative to insulin, while the soluble fraction contained about 8%, which probably arose mainly from disrupted proinsulin-rich noncrystalline prosecretory vesicles. Electron microscopic examination of the granule core fraction revealed large numbers of well preserved crystalline cores exhibiting typical dimensions and regular internal spacings of normal mature rat beta-granule inclusions. These results provide direct biochemical evidence that the beta-granules are nonuniform in composition with the insulin contained mainly in a crystalline state in the electron-dense central inclusions while the C-peptide is dissolved in the fluid bathing the crystalline hormone. The significance of this structural organization of the beta-granule is discussed.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Michael, and R Carroll, and H H Swift, and D F Steiner
January 1974, Advances in cytopharmacology,
J Michael, and R Carroll, and H H Swift, and D F Steiner
June 2007, Molecular & cellular proteomics : MCP,
J Michael, and R Carroll, and H H Swift, and D F Steiner
February 2015, Science (New York, N.Y.),
J Michael, and R Carroll, and H H Swift, and D F Steiner
October 1970, The Journal of cell biology,
J Michael, and R Carroll, and H H Swift, and D F Steiner
August 1977, The Journal of parasitology,
J Michael, and R Carroll, and H H Swift, and D F Steiner
October 1982, Diabetologia,
J Michael, and R Carroll, and H H Swift, and D F Steiner
January 1975, The Journal of cell biology,
J Michael, and R Carroll, and H H Swift, and D F Steiner
January 1980, Neuroscience,
J Michael, and R Carroll, and H H Swift, and D F Steiner
January 1973, Neuroendocrinology,
J Michael, and R Carroll, and H H Swift, and D F Steiner
January 1993, Experimental cell research,
Copied contents to your clipboard!