Transforming growth factor beta regulation of cell proliferation. 1987

H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37322.

Two types of transforming growth factors (TGF) have been purified and well characterized, TGF alpha and TGF beta. TGF alpha is a 5.6 kD single chain molecule that shows sequence homology to epidermal growth factor (EGF), binds to the EGF receptor, and has biological effects very similar to those of EGF. TGF beta is different from TGF alpha in its molecular structure and biological activity, and has its own specific cell surface receptor. TGF beta is a 25 kD homodimer of 12.5 kD subunits that shows no sequence homology to TGF alpha. TGF beta is a highly ubiquitous molecule produced by a variety of cell types in an inactive form. Most cells have receptors for TGF beta, suggesting that a major regulatory step in TGF beta action is through activation of the inactive form. Growth stimulatory effects with TGF beta have been observed so far only in fibroblastic cells. In at least one circumstance, there is evidence that the stimulatory effects of TGF beta in fibroblastic cells is indirect through induction of c-sis and autocrine stimulation by platelet-derived growth factor (PDGF)-like material. TGF beta inhibits in vitro proliferation of most cell types tested, including normal epithelial cells. Thus TGF beta is primarily a growth inhibitor and not a classical growth factor. Increased autocrine stimulation by endogenous TGF beta in fibroblastic cells or decreased inhibitory effects in epithelial cells (or other cells normally inhibited by TGF beta) could lead to an increased proliferative potential and thereby contribute to the neoplastic phenotype.

UI MeSH Term Description Entries
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
July 1988, Endocrinology,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
May 1986, Biochemical and biophysical research communications,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
November 1991, Journal of cellular biochemistry,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
April 1995, Cancer research,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
March 1997, Blood,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
January 1991, Molecular endocrinology (Baltimore, Md.),
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
January 1992, Cancer treatment and research,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
November 2001, Molecular cell biology research communications : MCBRC,
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
January 1992, Growth factors (Chur, Switzerland),
H L Moses, and R J Coffey, and E B Leof, and R M Lyons, and J Keski-Oja
February 1990, Blood,
Copied contents to your clipboard!