Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination. 1987

J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
Department of Biochemistry, University of Leiden, The Netherlands.

Signals setting the level of transcription of the tRNA-tufB operon have been studied by deletion mapping. TufB transcription was measured in vivo with plasmid-borne tRNA-tufB:galk operon fusions. Removal of the sequences from -133 to -58 with respect to the transcription start point, results in a 90% decrease of tufB transcription. This demonstrates the presence of a region, upstream of the tRNA-tufB promoter, that enhances the expression of the operon. DNA fragments bearing this upstream activator region do not display an abnormal electrophoretic mobility, as has been observed for the rrnB P1 upstream activator. Deletions starting in the first tRNA gene and directing towards tufB reveal at least two sites that influence tufB transcription. One signals transcription termination in the intergenic region between thrT and tufB. The other may be involved in antitermination. Possible mechanisms underlying antitermination and termination are considered in the light of the nucleotide sequence.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
October 1987, Journal of molecular biology,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
November 1984, Journal of bacteriology,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
December 1979, The Journal of biological chemistry,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
August 2009, Proceedings of the National Academy of Sciences of the United States of America,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
August 1988, European journal of biochemistry,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
January 1989, Gene,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
March 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
January 1989, Plasmid,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
May 1977, Journal of molecular biology,
J H van Delft, and B Mariñon, and D S Schmidt, and L Bosch
November 1985, Journal of bacteriology,
Copied contents to your clipboard!