Preparation of Thin Frozen Sections from Nonfixed and Undecalcified Hard Tissues Using Kawamoto's Film Method (2020). 2021

Tadafumi Kawamoto, and Komei Kawamoto
Radioisotope Research Institute, School of Dental Medicine, Tsurumi University, Yokohama, Japan. kawamoto-t@tsurumi-u.ac.jp.

A method for preparing frozen sections with an adhesive film is described. In order to observe fine structures and weak fluorescence of samples, new types of adhesive films [Cryofilm type 3C(16UF) and 4D(16UF)] are used. The adhesive film is made with very clear and very low autofluorescence. For gene analysis, a very thin adhesive film (LMD film) is used to cut by means of the laser microdissection (LMD). For MALDI mass spectrometry imaging (MALDI-MSI), a conductive adhesive film (Cryofilm type MS) is used to avoid electric charge of the sample. A biological sample is frozen quickly and freeze-embedded. The frozen sample is cut with a very sharp disposable blade made from fine tungsten carbide. The combination of the adhesive films and the blade can generate 3 micrometer thick sections from samples including bone, while it is also possible to generate 1 μm thick sections. The morphology of bone and soft tissues are preserved using this method. Cells such as osteoblasts, fibroblasts, and osteoclasts are clearly observed with an oil immersion lens at high magnification. Sections generated using the Cryofilm type 3C(16UF) shows weak fluorescent signals more clearly than sections generated with the previously reported adhesive films [Cryofilm type 2C(9) and 2C(10)]. Furthermore fluorescence of the fine structures in cells is clearly shown using a super-high-resolution microscope. Several staining and experimental methods such as histology, histochemistry, enzyme histochemistry, immunohistochemistry, and in situ hybridization can be performed on these sections. This method is also useful for preparing frozen sections of large sample such as a whole-body mouse and rat. In gene analysis, gene quality of sample collected from the section made with the LMD film is superior to that of sample made by a conventional method. The Cryofilm type MS makes almost complete section from tissues including hard tissues and large samples. The satisfactory signals are detected from the section with MALDI-MSI.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D008867 Microtomy The technique of using a microtome to cut thin or ultrathin sections of tissues embedded in a supporting substance. The microtome is an instrument that hold a steel, glass or diamond knife in clamps at an angle to the blocks of prepared tissues, which it cuts in sections of equal thickness. Thin Sectioning,Ultramicrotomy,Sectioning, Thin,Sectionings, Thin,Thin Sectionings
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005629 Frozen Sections Thinly cut sections of frozen tissue specimens prepared with a cryostat or freezing microtome. Frozen Section,Section, Frozen,Sections, Frozen
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic

Related Publications

Tadafumi Kawamoto, and Komei Kawamoto
June 1970, Koku Eisei Gakkai zasshi,
Tadafumi Kawamoto, and Komei Kawamoto
November 1958, Stain technology,
Tadafumi Kawamoto, and Komei Kawamoto
October 1971, Canadian journal of medical technology,
Tadafumi Kawamoto, and Komei Kawamoto
January 1959, Journal of dental research,
Tadafumi Kawamoto, and Komei Kawamoto
June 1950, Journal of dental research,
Tadafumi Kawamoto, and Komei Kawamoto
January 1977, Medical laboratory sciences,
Tadafumi Kawamoto, and Komei Kawamoto
November 2018, Microscopy research and technique,
Tadafumi Kawamoto, and Komei Kawamoto
January 1971, Histochemie. Histochemistry. Histochimie,
Tadafumi Kawamoto, and Komei Kawamoto
July 1989, Stain technology,
Tadafumi Kawamoto, and Komei Kawamoto
June 1970, Indian journal of medical sciences,
Copied contents to your clipboard!