Overexpression and purification of a biologically active rifampicin-resistant beta subunit of Escherichia coli RNA polymerase. 1987

J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032.

The gene rpoB (rifD 18), which encodes rifampicin-resistant beta subunit of Escherichia coli RNA polymerase, has been placed on an overexpression plasmid under the control of bacteriophage T7 promoter. Induction of the T7 RNA polymerase gene in the host cells resulted in extensive overproduction of the beta polypeptide. Most of the overproduced material was recovered from cell lysates in insoluble form and was solubilized by extraction with 6 M urea. Purified overproduced beta subunit was added, in molar excess, to urea-denatured rifampicin-sensitive RNA polymerase. Upon removal of urea by dialysis, the reconstituted enzyme became rifampicin-resistant, indicating that overproduced beta subunit can be efficiently assembled into functional holoenzyme.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
July 1993, The Journal of biological chemistry,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
December 1983, Gene,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
February 1983, The Journal of biological chemistry,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
January 1983, Molecular & general genetics : MGG,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
January 1970, Federation proceedings,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
January 1981, Molecular & general genetics : MGG,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
December 1982, FEBS letters,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
February 1976, Molecular & general genetics : MGG,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
October 1969, FEBS letters,
J D McKinney, and J Y Lee, and R E O'Neill, and A Goldfarb
August 1971, Biochemical and biophysical research communications,
Copied contents to your clipboard!