Probing RNA Helicase Conformational Changes by Single-Molecule FRET Microscopy. 2021

Linda Krause, and Dagmar Klostermeier
Institute for Physical Chemistry, University of Muenster, Muenster, Germany.

Förster resonance energy transfer (FRET) is a versatile tool to study the conformational dynamics of proteins. Here, we describe the use of confocal and total internal reflection fluorescence (TIRF) microscopy to follow the conformational cycling of DEAD-box helicases on the single molecule level, using the eukaryotic translation initiation factor eIF4A as an illustrative example. Confocal microscopy enables the study of donor-acceptor-labeled molecules in solution, revealing the population of different conformational states present. With TIRF microscopy, surface-immobilized molecules can be imaged as a function of time, revealing sequences of conformational states and the kinetics of conformational changes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000072760 Single Molecule Imaging High resolution imaging techniques that allow visualization of individual molecules of proteins, lipids, or nucleic acids within cells or tissues. Single Molecule Analysis,Single Molecule Tracking,Single Particle Analysis,Single Particle Imaging,Single Particle Microscopy,Single Particle Spectroscopy,Single Particle Tracking,Single Molecule Microscopy,Single Molecule Spectroscopy,Analyses, Single Particle,Analysis, Single Molecule,Analysis, Single Particle,Imaging, Single Molecule,Imaging, Single Particle,Microscopies, Single Particle,Microscopy, Single Molecule,Microscopy, Single Particle,Particle Tracking, Single,Single Molecule Analyses,Single Particle Analyses,Single Particle Microscopies,Single Particle Spectroscopies,Single Particle Trackings,Spectroscopy, Single Molecule,Spectroscopy, Single Particle,Tracking, Single Molecule,Tracking, Single Particle
D053487 DEAD-box RNA Helicases A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function. DEAD-box RNA Helicase,DEAD Box Helicase p68,p68 DEAD Box Protein,p68 RNA Helicase,DEAD box RNA Helicase,DEAD box RNA Helicases,Helicase, DEAD-box RNA,Helicase, p68 RNA,Helicases, DEAD-box RNA,RNA Helicase, DEAD-box,RNA Helicase, p68,RNA Helicases, DEAD-box
D031541 Fluorescence Resonance Energy Transfer A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Forster Resonance Energy Transfer

Related Publications

Linda Krause, and Dagmar Klostermeier
June 2006, Biophysical journal,
Linda Krause, and Dagmar Klostermeier
January 2010, Methods in molecular biology (Clifton, N.J.),
Linda Krause, and Dagmar Klostermeier
January 2016, Methods in enzymology,
Linda Krause, and Dagmar Klostermeier
September 2008, Current protocols in nucleic acid chemistry,
Linda Krause, and Dagmar Klostermeier
July 2015, Nature methods,
Linda Krause, and Dagmar Klostermeier
July 2016, Methods (San Diego, Calif.),
Copied contents to your clipboard!