Aging of the hypothalamo-pituitary-ovarian axis: hormonal influences and cellular mechanisms. 1987

J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.

Longitudinal studies employing heterochronic ovarian grafts and long-term ovariectomy indicate that there is no single pacemaker of reproductive aging. Neuroendocrine dysfunction, the declining follicular reserve, and ovarian secretions all contribute to reproductive decline, and their relative importance to the different stages of reproductive aging varies markedly. Moreover, although ovarian secretions during adulthood potentiate certain aspects of the reproductive aging process, their behavior does not fit a simple model of cumulative steroidal damage incurred over the lifespan. Current data are more consistent with temporally distinct windows of steroidal vulnerability for the events affected: cycle lengthening is affected by ovarian secretions during the period of cyclicity, and post-cyclic neuroendocrine failure is potentiated by ovarian secretions during the peri- and post-cyclic period of the lifespan. Recent examination of estradiol receptor dynamics reveals multiple, albeit selective, changes during aging that may contribute to the age-related impairments of tissue sensitivity to estrogen. These changes vary qualitatively and quantitatively among target tissues. Thus, aging of the hypothalamo-pituitary-ovarian axis at the cellular level mirrors, in its multifactorial nature, aging at the organismic level.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011959 Receptors, Estradiol Cytoplasmic proteins that bind estradiol, migrate to the nucleus, and regulate DNA transcription. Estradiol Receptors,Estradiol Receptor,Receptor, Estradiol
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
January 1967, Archives d'anatomie microscopique et de morphologie experimentale,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
January 1975, Archivio di ostetricia e ginecologia,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
January 1987, Soins. Gynecologie, obstetrique, puericulture, pediatrie,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
January 1987, Journal of steroid biochemistry,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
March 1977, La Revue du praticien,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
February 1982, The Journal of clinical endocrinology and metabolism,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
October 2012, Biology of reproduction,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
June 2004, Annals of the New York Academy of Sciences,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
January 1998, The National medical journal of India,
J F Nelson, and M D Bergman, and K Karelus, and L S Felicio
November 1972, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
Copied contents to your clipboard!